Сочинения

Что значит r квадрат в экономике. Регрессионный анализ. Задача с использованием уравнения линейной регрессии

Множественный коэффициент корреляции используется в качестве меры степени тесноты статистической связи между результирующим показателем (зависимой переменной) y и набором объясняющих (независимых) переменных или, иначе говоря, оценивает тесноту совместного влияния факторов на результат.

Множественный коэффициент корреляции может быть вычислен по ряду формул 5 , в том числе:

    с использованием матрицы парных коэффициентов корреляции

, (3.18)

где r - определитель матрицы парных коэффициентов корреляции y ,
,

r 11 - определитель матрицы межфакторной корреляции
;

. (3.19)

Для модели, в которой присутствуют две независимые переменные, формула (3.18) упрощается

. (3.20)

Квадрат множественного коэффициента корреляции равен коэффициенту детерминации R 2 . Как и в случае парной регрессии, R 2 свидетельствует о качестве регрессионной модели и отражает долю общей вариации результирующего признака y , объясненную изменением функции регрессии f (x ) (см. 2.4). Кроме того, коэффициент детерминации может быть найден по формуле

. (3.21)

Однако использование R 2 в случае множественной регрессии является не вполне корректным, так как коэффициент детерминации возрастает при добавлении регрессоров в модель. Это происходит потому, что остаточная дисперсия уменьшается при введении дополнительных переменных. И если число факторов приблизится к числу наблюдений, то остаточная дисперсия будет равна нулю, и коэффициент множественной корреляции, а значит и коэффициент детерминации, приблизятся к единице, хотя в действительности связь между факторами и результатом и объясняющая способность уравнения регрессии могут быть значительно ниже.

Для того чтобы получить адекватную оценку того, насколько хорошо вариация результирующего признака объясняется вариацией нескольких факторных признаков, применяют скорректированный коэффициент детерминации

(3.22)

Скорректированный коэффициент детерминации всегда меньше R 2 . Кроме того, в отличие от R 2 , который всегда положителен,
может принимать и отрицательное значение.

Пример (продолжение примера 1) . Рассчитаем множественный коэффициент корреляции, согласно формуле (3.20):

Величина множественного коэффициента корреляции, равного 0,8601, свидетельствует о сильной взаимосвязи стоимости перевозки с весом груза и расстоянием, на которое он перевозится.

Коэффициент детерминации равен: R 2 =0,7399.

Скорректированный коэффициент детерминации рассчитываем по формуле (3.22):

=0,7092.

Заметим, что величина скорректированного коэффициента детерминации отличается от величины коэффициента детерминации.

Таким образом, 70,9% вариации зависимой переменной (стоимости перевозки) объясняется вариацией независимых переменных (весом груза и расстоянием перевозки). Остальные 29,1% вариации зависимой переменной объясняются факторами, неучтенными в модели.

Величина скорректированного коэффициента детерминации достаточно велика, следовательно, мы смогли учесть в модели наиболее существенные факторы, определяющие стоимость перевозки. 

Множественный коэффициент корреляции трех переменных – это показатель тесноты линейной связи между одним из признаков (буква индекса перед тире) и совокупностью двух других признаков (буквы индекса после тире):

; (12.7)

(12.8)

Эти формулы позволяют легко вычислить множественные коэффициенты корреляции при известных значениях коэффициентов парной корреляции r xy , r xz и r yz .

Коэффициент R не отрицателен и всегда находится в пределах от 0 до 1. При приближении R к единице степень линейной связи трех признаков увеличивается. Между коэффициентом множественной корреляции, например R y-xz , и двумя коэффициентами парной корреляции r yx и r yz существует следующее соотношение: каждый из парных коэффициентов не может превышать по абсолютной величине R y-xz .

Квадрат коэффициента множественной корреляции R 2 называется коэффициентом множественной детерминации. Он показывает долю вариации зависимой переменной под воздействием изучаемых факторов.

Значимость множественной корреляции оценивается по
F –критерию:

, (12.9)

n – объем выборки,

k – число признаков; в нашем случае k = 3.

Теоретическое значение F –критерия берут из таблицы приложений для ν 1 = k –1 и ν 2 = n–k степеней свободы и принятого уровня значимости. Нулевая гипотеза о равенстве множественного коэффициента корреляции в совокупности нулю (H 0:R = 0) принимается, если F факт. < F табл . и отвергается, если F факт. ≥ F табл .

Конец работы -

Эта тема принадлежит разделу:

Математическая статистика

Учреждение образования.. гомельский государственный университет.. имени франциска скорины ю м жученко..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Учебное пособие
для студентов вузов, обучающихся по специальности 1-31 01 01 «Биология» Гомель 2010

Предмет и метод математической статистики
Предмет математической статистики – изучение свойств массовых явлений в биологии, экономике, технике и других областях. Эти явления обычно представляются сложными, вследствие разнообразия (варьиров

Понятие случайного события
Статистическая индукция или статистические заключения, как главная составная часть метода исследования массовых явлений, имеют свои отличительные черты. Статистические заключения делают с численно

Вероятность случайного события
Числовая характеристика случайного события, обладающая тем свойством, что для любой достаточно большой серии испытаний частота события лишь незначительно отличается от этой характеристики, называет

Вычисление вероятностей
Часто возникает необходимость одновременно складывать и умножать вероятности. Например, требуется определить вероятность выпадения 5 очков при одновременном бросании 2 кубиков. Искомая сумма вероят

Понятие случайной переменной
Определив понятие вероятности и выяснив ее главные свойства, перейдем к рассмотрению одного из важнейших понятий теории вероятностей – понятия случайной переменной. Допустим, что в результ

Дискретные случайные переменные
Случайная переменная дискретна, если совокупность возможных ее значений конечна, или, по крайней мере, поддается счислению. Предположим, что случайная переменная X может принимать значения x1

Непрерывные случайные переменные
В противоположность дискретным случайным переменным, рассмотренным в предыдущем подразделе, совокупность возможных значений непрерывной случайной переменной не только не конечна, но и не поддается

Математическое ожидание и дисперсия
Часто возникает необходимость охарактеризовать распределение случайной переменной с помощью одного–двух числовых показателей, выражающих наиболее существенные свойства этого распределения. К таким

Моменты
Большое значение в математической статистике имеют так называемые моменты распределения случайной переменной. В математическом ожидании большие значения случайной величины учитываются недостаточно.

Биномиальное распределение и измерение вероятностей
В этой теме рассмотрим основные типы распределения дискретных случайных переменных. Предположим, что вероятность наступления некоторого случайного события А при единичном испытании равно

Прямоугольное (равномерное) распределение
Прямоугольное (равномерное) распределение - простейший тип непрерывных распределений. Если случайная переменная X может принимать любое действительное значение в интервале (а, b), где а и b – дейст

Нормальное распределение
Нормальное распределение играет основную роль в математической статистике. Это ни в малейшей степени не является случайным: в объективной действительности весьма часто встречаются различные признак

Логарифмически нормальное распределение
Случайная переменная Y имеет логарифмически нормальное распределение с параметрами μ и σ, если случайная переменная X = lnY имеет нормальное распределение с теми же параметрами μ и &

Средние величины
Из всех групповых свойств наибольшее теоретическое и практическое значение имеет средний уровень, измеряемый средней величиной признака. Средняя величина признака – понятие очень глубокое,

Общие свойства средних величин
Для правильного использования средних величин необходимо знать свойства этих показателей: срединное расположение, абстрактность и единство суммарного действия. По своему численному значени

Средняя арифметическая
Средняя арифметическая, обладая общими свойствами средних величин, имеет свои особенности, которые можно выразить следующими формулами:

Средний ранг (непараметрическая средняя)
Средний ранг определяется для таких признаков, для которых еще не найдены способы количественного измерения. По степени проявления таких признаков объекты могут быть ранжированы, т. е. расположены

Взвешенная средняя арифметическая
Обычно, чтобы рассчитать среднюю арифметическую, складывают все значения признака и полученную сумму делят на число вариантов. В этом случае каждое значение, входя в сумму, увеличивает ее на полную

Средняя квадратическая
Средняя квадратическая вычисляется по формуле: , (6.5) Она равна корню квадратному из суммы

Медиана
Медианой называют такое значение признака, которое разделяет всю группу на две равные части: одна часть имеет значения признака меньшее, чем медиана, а другая – большее. Например, если име

Средняя геометрическая
Чтобы получить среднюю геометрическую для группы с n данными, нужно все варианты перемножить и из полученного произведения извлечь корень n-й степени:

Средняя гармоническая
Средняя гармоническая рассчитывается по формуле. (6.14) Для пяти вариантов: 1, 4, 5, 5 сре

Число степеней свободы
Число степеней свободы равно числу элементов свободного разнообразия в группе. Оно равно числу всех имеющихся элементов изучения без числа ограничений разнообразия. Например, для исследова

Коэффициент вариации
Стандартное отклонение – величина именованная, выраженная в тех же единицах измерения, как и средняя арифметическая. Поэтому для сравнения разных признаков, выраженных в разных единицах из

Лимиты и размах
Для быстрой и примерной оценки степени разнообразия часто применяются простейшие показатели: lim = {min ¸ max} – лимиты, т. е. наименьшее и наибольшее значения признака, p =

Нормированное отклонение
Обычно степень развития признака определяется путем его измерения и выражается определенным именованным числом: 3 кг веса, 15 см длины, 20 зацепок на крыле у пчел, 4% жира в молоке, 15 кг настрига

Средняя и сигма суммарной группы
Иногда бывает необходимо определить среднюю и сигму для суммарного распределения, составленного из нескольких распределений. При этом известны не сами распределения, а только их средние и сигмы.

Скошенность (асимметрия) и крутизна (эксцесс) кривой распределения
Для больших выборок (n > 100) вычисляют еще два статистических показателя. Скошенность кривой называется асимметрией:

Вариационный ряд
По мере увеличения численности изучаемых групп все более и более проявляется та закономерность в разнообразии, которая в малочисленных группах была скрыта случайной формой своего проявления.

Гистограмма и вариационная кривая
Гистограмма – это вариационный ряд, представленный в виде диаграммы, в которой различная величина частот изображается различной высотой столбиков. Гистограмма распределения данных представлена на р

Достоверность различия распределений
Статистическая гипотеза – это определённое предположение о распределении вероятностей, лежащем в основе наблюдаемой выборки данных. Проверка статистической гипотезы – это процесс принятия

Критерий по асимметрии и эксцессу
Некоторые признаки растений, животных и микроорганизмов при объединении объектов в группы дают распределения, значительно отличающиеся от нормального. В тех случаях, когда какие-нибудь при

Генеральная совокупность и выборка
Весь массив особей определенной категории называется генеральной совокупностью. Объем генеральной совокупности определяется задачами исследования. Если изучается какой-нибудь вид диких жив

Репрезентативность
Непосредственное изучение группы отобранных объектов дает, прежде всего, первичный материал и характеристику самой выборки. Все выборочные данные и сводные показатели имеют значение в каче

Ошибки репрезентативности и другие ошибки исследований
Оценка генеральных параметров по выборочным показателям имеет свои особенности. Часть никогда не может полностью охарактеризовать все целое, поэтому характеристика генеральной совокупности

Доверительные границы
Определять величину ошибок репрезентативности необходимо для того, чтобы выборочные показатели использовать еще и для нахождения возможных значений генеральных параметров. Этот процесс называется о

Общий порядок оценки
Три величины, необходимые для оценки генерального параметра, – выборочный показатель (), критерий надежности

Оценка средней арифметической
Оценка средней величины имеет целью установить величину генеральной средней для изученной категории объектов. Требуемая для этой цели ошибка репрезентативности определяется по формуле:

Оценка средней разности
В некоторых исследованиях в качестве первичных данных берется разность двух измерений. Это может быть в случае, когда каждая особь выборки изучается в двух состояниях – или в разном возрасте, или п

Недостоверная и достоверная оценка средней разности
Такие результаты выборочных исследований, по которым нельзя получить никакой определенной оценки генерального параметра (или он больше нуля, или меньше, или равен нулю), называются недостоверными.

Оценка разности генеральных средних
В биологических исследованиях особое значение имеет разность двух величин. По разности ведется сравнение разных популяций, рас, пород, сортов, линий, семейств, опытных и контрольных групп (метод гр

Критерий достоверности разности
При том большом значении, которое имеет для исследователей получение достоверных разностей, появляется необходимость овладеть методами, позволяющими определить – достоверна ли полученная, реально с

Репрезентативность при изучении качественных признаков
Качественные признаки обычно не могут иметь градаций проявления: они или имеются, или не имеются у каждой из особей, например пол, комолость, наличие или отсутствие каких-нибудь особенностей, уродс

Достоверность разности долей
Достоверность разности выборочных долей определяется так же, как и для разности средних: (10.34)

Коэффициент корреляции
Во многих исследованиях требуется изучить несколько признаков в их взаимной связи. Если вести такое исследование по отношению к двум признакам, то можно заметить, что изменчивость одного признака н

Ошибка коэффициента корреляции
Как и всякая выборочная величина, коэффициент корреляции имеет свою ошибку репрезентативности, вычисляемую для больших выборок по формуле:

Достоверность выборочного коэффициента корреляции
Критерий выборочного коэффициента корреляции определяется по формуле: (11.9) где:

Доверительные границы коэффициента корреляции
Доверительные границы генерального значения коэффициента корреляции находятся общим способом по формуле:

Достоверность разности двух коэффициентов корреляции
Достоверность разности коэффициентов корреляции определяется так же, как и достоверность разности средних, по обычной формуле

Уравнение прямолинейной регрессии
Прямолинейная корреляция отличается тем, что при этой форме связи каждому из одинаковых изменений первого признака соответствует вполне определенное и тоже одинаковое в среднем изменение другого пр

Ошибки элементов уравнения прямолинейной регрессии
В уравнении простой прямолинейной регрессии: у = а + bх возникают три ошибки репрезентативности. 1 Ошибка коэффициента регрессии:

Частный коэффициент корреляции
Частный коэффициент корреляции – это показатель, измеряющий степень сопряженности двух признаков при постоянном значении третьего. Математическая статистика позволяет установить корреляцию

Линейное уравнение множественной регрессии
Математическое уравнение для прямолинейной зависимости между тремя переменными называется множественным линейным уравнением плоскости регрессии. Оно имеет следующий общий вид:

Корреляционное отношение
Если связь между изучаемыми явлениями существенно отклоняется от линейной, что легко установить по графику, то коэффициент корреляции непригоден в качестве меры связи. Он может указать на отсутстви

Свойства корреляционного отношения
Корреляционное отношение измеряет степень корреляции при любой ее форме. Кроме того, корреляционное отношение обладает рядом других свойств, представляющих большой интерес в статистическом

Ошибка репрезентативности корреляционного отношения
Еще не разработано точной формулы ошибки репрезентативности корреляционного отношения. Обычно приводимая в учебниках формула имеет недостатки, которыми не всегда можно пренебречь. Эта формула не уч

Критерий линейности корреляции
Для определения степени приближения криволинейной зависимости к прямолинейной используется критерий F, вычисляемый по формуле:

Дисперсионный комплекс
Дисперсионный комплекс – это совокупность градаций с привлеченными для исследования данными и средними из данных по каждой градации (частные средние) и по всему комплексу (общая средняя).

Статистические влияния
Статистическое влияние – это отражение в разнообразии результативного признака того разнообразия фактора (его градаций), которое организовано в исследовании. Для оценки влияния фактора нео

Факториальное влияние
Факториальное влияние – это простое или комбинированное статистическое влияние изучаемых факторов. В однофакторных комплексах изучается простое влияние одного фактора при определенных орга

Однофакторный дисперсионный комплекс
Дисперсионный анализ разработан и введен в практику сельскохозяйственных и биологических исследований английским ученым Р. А. Фишером, который открыл закон распределения отношения средних квадратов

Многофакторный дисперсионный комплекс
Ясное представление о математической модели дисперсионного анализа облегчает понимание необходимых вычислительных операций, особенно при обработке данных многофакторных опытов, в которых больше ист

Преобразования
Правильное использование дисперсионного анализа для обработки экспериментального материала предполагает однородность дисперсий по вариантам (выборкам), нормальное или близкое к нему распределение в

Показатели силы влияний
Определение силы влияний по их результатам требуется в биологии, сельском хозяйстве, медицине для выбора наиболее эффективных средств воздействия, для дозировки физических и химических агентов – ст

Ошибка репрезентативности основного показателя силы влияния
Точная формула ошибки основного показателя силы влияния еще не найдена. В однофакторных комплексах, когда ошибка репрезентативности определяется только для одного показателя факториального

Предельные значения показателей силы влияния
Основной показатель силы влияния равен доле одного слагаемого от всей суммы слагаемых. Кроме того, этот показатель равен квадрату корреляционного отношения. По этим двум причинам показатель силы вл

Достоверность влияний
Основной показатель силы влияния, полученный в выборочном исследовании, характеризует, прежде всего, ту степень влияния, которая реально, в действительности, проявилась в группе исследованных объек

Дискриминантный анализ
Дискриминантный анализ является одним из методов многомерного статистического анализа. Цель дискриминантного анализа состоит в том, чтобы на основе измерения различных характеристик (признаков, пар

Постановка задачи, методы решения, ограничения
Предположим, имеется n объектов с m характеристиками. В результате измерений каждый объект характеризуется вектором x1 ... xm, m >1. Задача состоит в том, что

Предположения и ограничения
Дискриминантный анализ «работает» при выполнении ряда предположений. Предположение о том, что наблюдаемые величины – измеряемые характеристики объекта – имеют нормальное распределение. Это

Алгоритм дискриминантного анализа
Решение задач дискриминации (дискриминантный анализ) состоит в разбиении всего выборочного пространства (множества реализации всех рассматриваемых многомерных случайных величин) на некоторое число

Кластерный анализ
Кластерный анализ объединяет различные процедуры, используемые для проведения классификации. В результате применения этих процедур исходная совокупность объектов разделяется на кластеры или группы

Методы кластерного анализа
В практике обычно реализуются агломеративные методы кластеризации. Обычно перед началом классификации данные стандартизуются (вычитается среднее и производится деление на корень квадратный

Алгоритм кластерного анализа
Кластерный анализ – это совокупность методов классификации многомерных наблюдений или объектов, основанных на определении понятия расстояния между объектами с последующим выделением из них групп, &

Попробуем для начала найти ответ на каждый из обозначенных нами вопросов в ситуации, когда наша каузальная модель содержит всего две независимые переменные.

Множественная корреляция R и коэффициент детерминация R2

Для оценки совокупной связи всех независимых переменных с зависимой переменной используется множественный коэффициент корреляции R. Отличие коэффициента множественной корреляции R от бивариативного коэффициента корреляции г заключается в том, что он может быть лишь положительным. Для двух независимых переменных он может быть оценен следующим образом:

Коэффициент множественной корреляции может быть определен и в результате оценки частных коэффициентов регрессии, составляющих уравнение (9.1). Для двух переменных это уравнение, очевидно, примет следующий вид:

(9.2)

Если наши независимые переменные будут трансформированы в единицы стандартного нормального распределения, или Z-распределения, уравнение (9.2), очевидно, примет следующий вид:

(9.3)

В уравнении (9.3) коэффициент β обозначает стандартизированное значение коэффициента регрессии В.

Сами стандартизированные коэффициенты регрессии могут быть вычислены по следующим формулам:

Теперь формула для вычисления коэффициента множественной корреляции будет выглядеть так:

Еще одним способом оценки коэффициента корреляции R является вычисление бивариативного коэффициента корреляции r между значениями зависимой переменной У и соответствующими им значениями , вычисленными на основании уравнения линейной регрессии (9.2). Иными словами, величина R может быть оценена следующим образом:

Наряду с этим коэффициентом мы можем оценить, как и в случае простой регрессии, величину R 2, которую принято еще обозначать как коэффициент детерминации. Так же как и в ситуации оценки связи между двумя переменными, коэффициент детерминации R 2 показывает, какой процент дисперсии зависимой переменной Y , т.е. , оказывается связанным с дисперсией всех независимых переменных – . Иными словами, оценка коэффициента детерминации может быть осуществлена следующем образом:

Также мы можем оценить процент остаточной дисперсии зависимой переменной, нс связанный ни с одной из независимых переменных 1 – R 2. Квадратный корень от этой величины, т.е. величина , так же, как и в случае бивариативной корреляции, называют коэффициентом отчуждения.

Корреляция части

Коэффициент детерминация R 2 демонстрирует, какой процент дисперсии зависимой переменной может быть связан с дисперсией всех независимых переменных, включенных в каузальную модель. Чем больше этот коэффициент, тем более значимой является выдвинутая нами каузальная модель. Если этот коэффициент оказывается не слишком большим, то и вклад исследуемых нами переменных в общую дисперсию зависимой переменной также оказывается незначительным. На практике, однако, часто требуется не только оценить совокупный вклад всех переменных, но и отдельный вклад каждой из рассматриваемых нами независимых переменных. Такой вклад может быть определен как корреляция части.

Как мы знаем, в случае бивариативной корреляции процент дисперсии зависимой переменной, связанный с дисперсией независимой переменной, может быть обозначен как r 2. Однако часть этой дисперсии в случае исследования эффектов нескольких независимых переменных оказывается обусловлена одновременно дисперсией независимой переменной, которую мы используем в качестве контрольной. Наглядно эти соотношения показаны на рис. 9.1.

Рис. 9.1. Соотношение дисперсий зависимой (Y ) и двух независимых (X 1 и Х 2) переменных в корреляционном анализе с двумя независимыми переменными

Как показано на рис. 9.1, вся дисперсия Y , связанная с двумя нашими независимыми переменными, состоит из трех частей, обозначенными а, b и с. Части а и b дисперсии Y принадлежат по отдельности дисперсии двух независимых переменных – Х 1 и Х 2. В то же время дисперсия части с одновременно связывает и дисперсию зависимой переменной У, и дисперсию двух наших переменных X. Следовательно, для того чтобы оценить связь переменной X 1 с переменной Y, которая не обусловлена влиянием переменной Х 2 на переменную Y , необходимо из величины R" 2 вычесть величину квадрата корреляции Y с Х 2:

(9.6)

Аналогичным образом можно оценить часть корреляции У с Х 2, которая не обусловлена ее корреляцией с Х 1.

(9.7)

Величина sr в уравнениях (9.6) и (9.7) и есть искомая нами корреляция части.

Определить корреляцию части можно также и в терминах обычной бивариативной корреляции:

По-другому корреляция части называется полупарциальной корреляцией. Это название означает, что при расчете корреляции эффект второй независимой переменной устраняется применительно к значениям первой независимой переменной, но нс устраняется по отношению к зависимой переменной. Эффект Х 1 как бы корректируется с помощью значений Х 2, так что коэффициент корреляции рассчитывается не между Y и X 1 а между Y и , причем значения рассчитываются на основе значений Х 2 так, как было рассмотрено в главе, посвященной простой линейной регрессии (см. подпараграф 7.4.2). Таким образом, оказывается справедливым следующее соотношение:

Для того чтобы оценить корреляцию одной независимой переменной с зависимой переменной в отсутствие влияния других независимых переменных как на саму независимую переменную, так и на зависимую переменную, в регрессионном анализе используется понятие частной корреляции.

Частные корреляции

Частная, или парциальная, корреляция определяется в математической статистике через пропорцию дисперсии зависимой переменной, связанной с дисперсией данной независимой переменной, по отношению ко всей дисперсии этой зависимой переменной, не считая той ее части, которая связана с дисперсией других независимых переменных. Формально для случая двух независимых переменных это можно выразить следующим образом:

Сами значения частной корреляции рr могут быть найдены на основе значений бивариативной корреляции:

Частная корреляция, таким образом, может быть определена как обычная бивариативная корреляция между скорректированными значениями как зависимой, так и независимой переменной. Непосредственно коррекция осуществляется в соответствии со значениями независимой переменной, выступающей в качестве контрольной. Иными словами, частная корреляция между зависимой переменной Y и независимой переменной X i может быть определена как обычная корреляция между значениями и значениями , причем значения и предсказываются на основе значений второй независимой переменной Х 2.

Множественный коэффициент корреляции характеризует тесноту линейной связи между одной переменной и совокупностью других рассматриваемых переменных.
Особое значение имеет расчет множественного коэффициента корреляции результативного признака y с факторными x 1 , x 2 ,…, x m , формула для определения которого в общем случае имеет вид

где ∆ r – определитель корреляционной матрицы; ∆ 11 – алгебраическое дополнение элемента r yy корреляционной матрицы.
Если рассматриваются лишь два факторных признака, то для вычисления множественного коэффициента корреляции можно использовать следующую формулу:

Построение множественного коэффициента корреляции целесообразно только в том случае, когда частные коэффициенты корреляции оказались значимыми, и связь между результативным признаком и факторами, включенными в модель, действительно существует.

Коэффициент детерминации

Общая формула: R 2 = RSS/TSS=1-ESS/TSS
где RSS - объясненная сумма квадратов отклонений, ESS - необъясненная (остаточная) сумма квадратов отклонений, TSS - общая сумма квадратов отклонений (TSS=RSS+ESS)

,
где r ij - парные коэффициенты корреляции между регрессорами x i и x j , a r i 0 - парные коэффициенты корреляции между регрессором x i и y ;
- скорректированный (нормированный) коэффициент детерминации.

Квадрат множественного коэффициента корреляции называется множественным коэффициентом детерминации ; он показывает, какая доля дисперсии результативного признака y объясняется влиянием факторных признаков x 1 , x 2 , …,x m . Заметим, что формула для вычисления коэффициента детерминации через соотношение остаточной и общей дисперсии результативного признака даст тот же результат.
Множественный коэффициент корреляции и коэффициент детерминации изменяются в пределах от 0 до 1. Чем ближе к 1, тем связь сильнее и, соответственно, тем точнее уравнение регрессии, построенное в дальнейшем, будет описывать зависимость y от x 1 , x 2 , …,x m . Если значение множественного коэффициента корреляции невелико (меньше 0,3), это означает, что выбранный набор факторных признаков в недостаточной мере описывает вариацию результативного признака либо связь между факторными и результативной переменными является нелинейной.

Рассчитывается множественный коэффициент корреляции с помощью калькулятора . Значимость множественного коэффициента корреляции и коэффициента детерминации проверяется с помощью критерия Фишера .

Какое из приведенных чисел может быть значением коэффициента множественной детерминации:
а) 0,4 ;
б) -1;
в) -2,7;
г) 2,7.

Множественный линейный коэффициент корреляции равен 0.75 . Какой процент вариации зависимой переменной у учтен в модели и обусловлен влиянием факторов х 1 и х 2 .
а) 56,2 (R 2 =0.75 2 =0.5625);

В регрессионной статистике указываются множественный коэффициент корреляции (Множественный R) и детерминации (R-квадрат) между Y и массивом факторных признаков (что совпадает с полученными ранее значениями в корреляционном анализе)

Средняя часть таблицы (Дисперсионный анализ) необходима для проверки значимости уравнения регрессии.

Нижняя часть таблицы – точ

ечные оценки bi генеральных коэффициентов регрессии вi, проверка их значимости и интервальная оценка.

Оценка вектора коэффициентов b (столбец Коэффициенты ):

Тогда оценка уравнения регрессии имеет вид:

Необходимо проверить значимость уравнения регрессии и полученных коэффициентов регрессии.

Проверим на уровне б=0,05 значимость уравнения регрессии, т.е. гипотезу H0: в1=в2=в3=…=вk=0. Для этого рассчитывается наблюдаемое значение F-статистики:

Excel выдаёт это в результатах дисперсионного анализа :

QR=527,4296; Qост=1109,8673 =>

В столбце F указывается значение F набл .

По таблицам F-распределения или с помощью встроенной статистической функции F РАСПОБР для уровня значимости б=0,05 и числа степеней свободы числителя н1=k=4 и знаменателя н2=n-k-1=45 находим критическое значение F-статистики, равное

Fкр = 2,578739184

Так как наблюдаемое значение F-статистики превосходит ее критическое значение 8,1957 > 2,7587, то гипотеза о равенстве вектора коэффициентов отвергается с вероятностью ошибки, равной 0,05. Следовательно, хотя бы один элемент вектора в=(в1,в2,в3,в4)T значимо отличается от нуля.

Проверим значимость отдельных коэффициентов уравнения регрессии, т.е. гипотезу .

Проверку значимости регрессионных коэффициентов проводят на основе t-статистики для уровня значимости .

Наблюдаемые значения t-статистик указаны в таблице результатов в столбце t -статистика .

Коэффициенты (bi)

t-статистика (tнабл)

Y-пересечение

Переменная X5

Переменная X7

Переменная X10

Переменная X15

Их необходимо сравнить с критическим значением tкр, найденным для уровня значимости б=0,05 и числа степеней свободы н=n – k - 1.

Для этого используем встроенную статистическую функцию Excel СТЬЮДРАСПОБР, введя в предложенное меню вероятность б=0,05 и число степеней свободы н= n–k-1=50-4-1=45. (Можно найти значения tкр по таблицам математической статистики.

Получаем tкр= 2,014103359.

Для наблюдаемое значение t-статистики меньше критического по модулю 2,0141>|-0,0872|, 2,0141>|0,2630|, 2,0141>|0,7300|, 2,0141>|-1,6629|.

Следовательно, гипотеза о равенстве нулю этих коэффициентов не отвергается с вероятностью ошибки, равной 0,05, т.е. соответствующие коэффициенты незначимы.

Для наблюдаемое значение t-статистики больше критического значения по модулю |3,7658|>2,0141, следовательно, гипотеза H0 отвергается, т.е. - значим.

Значимость регрессионных коэффициентов проверяют и следующие столбцы результирующей таблицы:

Столбец p -значение показывает значимость параметров модели граничным 5%-ым уровнем, т.е. если p≤0,05, то соответствующий коэффициент считается значимым, если p>0,05, то незначимым.

И последние столбцы – нижние 95% и верхние 95% и нижние 98% и верхние 98% - это интервальные оценки регрессионных коэффициентов с заданными уровнями надёжности для г=0,95 (выдаётся всегда) и г=0,98 (выдаётся при установке соответствующей дополнительной надёжности).

Если нижние и верхние границы имеют одинаковый знак (ноль не входит в доверительный интервал), то соответствующий коэффициент регрессии считается значимым, в противном случае – незначимым

Как видно из таблицы, для коэффициента в3 p-значение p=0,0005<0,05 и доверительные интервалы не включают ноль, т.е. по всем проверочным критериям этот коэффициент является значимым.

Согласно алгоритму пошагового регрессионного анализа с исключением незначимых регрессоров, на следующем этапе необходимо исключить из рассмотрения переменную, имеющую незначимый коэффициент регрессии.

В случае, когда при оценке регрессии выявлено несколько незначимых коэффициентов, первым из уравнения регрессии исключается регрессор, для которого t-статистика () минимальна по модулю. По этому принципу на следующем этапе необходимо исключить переменную Х5 , имеющую незначимый коэффициент регрессии в2

II ЭТАП РЕГРЕССИОННОГО АНАЛИЗА.

В модель включены факторные признаки X7, X10, X15, исключён X5.

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Дисперсионный анализ

(число степеней свободы н)

(сумма квадратов отклонений Q)

(средний квадрат MS=SS/н)

(Fнабл= MSR/MSост)

Значимость F

Регрессия

Коэффи-циенты

Стандартная ошибка

t-ста-тистика

P-Значение

Верхние 95% (вimax)

Нижние 98% (вimin)

Y-пересечение

Переменная X7

Переменная X10

Переменная X15