Сочинения

Как решать системы уравнений методом гаусса. Метод гаусса или почему дети не понимают математику. Эквивалентные системы уравнений

Определение и описание метода Гаусса

Метод преобразований Гаусса (также известный как преобразование методом последовательного исключения неизвестных переменных из уравнения или матрицы) для решения систем линейных уравнений представляет собой классический методом решения системы алгебраических уравнений (СЛАУ). Также этот классический метод используют для решения таких задач как получение обратных матриц и определения ранговости матрицы.

Преобразование с помощью метода Гаусса заключается в совершении небольших (элементарных) последовательных изменениях системы линейных алгебраических уравнений, приводящих к исключению переменных из неё сверху вниз с образованием новой треугольной системы уравнений, являющейся равносильной исходной.

Определение 1

Эта часть решения носит название прямого хода решения Гаусса, так как весь процесс осуществляется сверху вниз.

После приведения исходной системы уравнений к треугольной осуществляется нахождение всех переменных системы снизу вверх (то есть первые найденные переменные занимают находятся именно на последних строчках системы или матрицы). Эта часть решения известна также как обратный ход решения методом Гаусса. Заключается его алгоритм в следующем: сначала вычисляется переменные, находящиеся ближе всего к низу системы уравнений или матрицы, затем полученные значения подставляются выше и таким образом находится ещё одна переменная и так далее.

Описание алгоритма метода Гаусса

Последовательность действий для общего решения системы уравнения методом Гаусса заключается в поочередном применении прямого и обратного хода к матрице на основе СЛАУ. Пусть исходная система уравнений имеет следующий вид:

$\begin{cases} a_{11} \cdot x_1 +...+ a_{1n} \cdot x_n = b_1 \\ ... \\ a_{m1} \cdot x_1 + a_{mn} \cdot x_n = b_m \end{cases}$

Чтобы решить СЛАУ методом Гаусса, необходимо записать исходную систему уравнений в виде матрицы:

$A = \begin{pmatrix} a_{11} & … & a_{1n} \\ \vdots & … & \vdots \\ a_{m1} & … & a_{mn} \end{pmatrix}$, $b=\begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$

Матрица $A$ называется основной матрицей и представляет собой записанные по порядку коэффициенты при переменных, а $b$ называется столбцом её свободных членов. Матрица $A$, записанная через черту со столбцом свободных членов называется расширенной матрицей:

$A = \begin{array}{ccc|c} a_{11} & … & a_{1n} & b_1 \\ \vdots & … & \vdots & ...\\ a_{m1} & … & a_{mn} & b_m \end{array}$

Теперь необходимо с помощью элементарных преобразований над системой уравнений (или над матрицей, так как это удобнее) привести её к следующему виду:

$\begin{cases} α_{1j_{1}} \cdot x_{j_{1}} + α_{1j_{2}} \cdot x_{j_{2}}...+ α_{1j_{r}} \cdot x_{j_{r}} +... α_{1j_{n}} \cdot x_{j_{n}} = β_1 \\ α_{2j_{2}} \cdot x_{j_{2}}...+ α_{2j_{r}} \cdot x_{j_{r}} +... α_{2j_{n}} \cdot x_{j_{n}} = β_2 \\ ...\\ α_{rj_{r}} \cdot x_{j_{r}} +... α_{rj_{n}} \cdot x_{j_{n}} = β_r \\ 0 = β_(r+1) \\ … \\ 0 = β_m \end{cases}$ (1)

Матрица, полученная из коэффициентов преобразованной системы уравнения (1) называется ступенчатой, вот так обычно выглядят ступенчатые матрицы:

$A = \begin{array}{ccc|c} a_{11} & a_{12} & a_{13} & b_1 \\ 0 & a_{22} & a_{23} & b_2\\ 0 & 0 & a_{33} & b_3 \end{array}$

Для этих матриц характерен следующий набор свойств:

  1. Все её нулевые строки стоят после ненулевых
  2. Если некоторая строка матрицы с номером $k$ ненулевая, то в предыдущей строчке этой же матрицы нулей меньше, чем в этой, обладающей номером $k$.

После получения ступенчатой матрицы необходимо подставить полученные переменные в оставшиеся уравнения (начиная с конца) и получить оставшиеся значения переменных.

Основные правила и разрешаемые преобразования при использовании метода Гаусса

При упрощении матрицы или системы уравнений этим методом нужно использовать только элементарные преобразования.

Таким преобразованиями считаются операции, которые возможно применять к матрице или системе уравнений без изменения её смысла:

  • перестановка нескольких строк местами,
  • прибавление или вычитание из одной строчки матрицы другой строчки из неё же,
  • умножение или деление строчки на константу, не равную нулю,
  • строчку, состоящую из одних нулей, полученную в процессе вычисления и упрощения системы, нужно удалить,
  • Также нужно удалить лишние пропорциональные строчки, выбрав для системы единственную из них с более подходящими и удобными для дальнейших вычислений коэффициентами.

Все элементарные преобразования являются обратимыми.

Разбор трёх основных случаев, возникающих при решении линейных уравнений используя метод простых преобразований Гаусса

Различают три возникающих случая при использовании метода Гаусса для решения систем:

  1. Когда система несовместная, то есть у неё нет каких-либо решений
  2. У системы уравнений есть решение, причём единственное, а количество ненулевых строк и столбцов в матрице равно между собой.
  3. Система имеет некое количество или множество возможных решений, а количество строк в ней меньше чем количество столбцов.

Исход решения с несовместной системой

Для этого варианта при решении матричного уравнения методом Гаусса характерно получение какой-то строчки с невозможностью выполнения равенства. Поэтому при возникновении хотя бы одного неправильного равенства полученная и исходная системы не имеют решений вне зависимости от остальных уравнений, которые они содержат. Пример несовместной матрицы:

$\begin{array}{ccc|c} 2 & -1 & 3 & 0 \\ 1 & 0 & 2 & 0\\ 0 & 0 & 0 & 1 \end{array}$

В последней строчке возникло невыполняемое равенство: $0 \cdot x_{31} + 0 \cdot x_{32} + 0 \cdot x_{33} = 1$.

Система уравнений, у которой есть только одно решение

Данные системы после приведения к ступенчатой матрице и удаления строчек с нулями имеют одинаковое количество строк и столбцов в основной матрице. Вот простейший пример такой системы:

$\begin{cases} x_1 - x_2 = -5 \\ 2 \cdot x_1 + x_2 = -7 \end{cases}$

Запишем её в виде матрицы:

$\begin{array}{cc|c} 1 & -1 & -5 \\ 2 & 1 & -7 \end{array}$

Чтобы привести первую ячейку второй строчки к нулю, домножим верхнюю строку на $-2$ и вычтем её из нижней строчки матрицы, а верхнюю строчку оставим в исходном виде, в итоге имеем следующее:

$\begin{array}{cc|c} 1 & -1 & -5 \\ 0 & 3 & 10 \end{array}$

Этот пример можно записать в виде системы:

$\begin{cases} x_1 - x_2 = -5 \\ 3 \cdot x_2 = 10 \end{cases}$

Из нижнего уравнения выходит следующее значение $x$: $x_2 = 3 \frac{1}{3}$. Подставим это значение в верхнее уравнение: $x_1 – 3 \frac{1}{3}$, получаем $x_1 = 1 \frac{2}{3}$.

Система, обладающая множеством возможных вариантов решений

Для этой системы характерно меньшее количество значащих строк, чем количество столбцов в ней (учитываются строки основной матрицы).

Переменные в такой системе делятся на два вида: базисные и свободные. При преобразовании такой системы содержащиеся в ней основные переменные необходимо оставить в левой области до знака “=”, а остальные переменные перенести в правую часть равенства.

У такой системы есть только некое общее решение.

Разберём следующую систему уравнений:

$\begin{cases} 2y_1 + 3y_2 + x_4 = 1 \\ 5y_3 - 4y_4 = 1 \end{cases}$

Запишем её в виде матрицы:

$\begin{array}{cccc|c} 2 & 3 & 0 & 1 & 1 \\ 0 & 0 & 5 & 4 & 1 \\ \end{array}$

Наша задача найти общее решение системы. Для этой матрицы базисными переменными будут $y_1$ и $y_3$ (для $y_1$ - так как он стоит на первом месте, а в случае $y_3$ - располагается после нулей).

В качестве базисных переменных выбираем именно те, которые первые в строке не равны нулю.

Оставшиеся переменные называются свободными, через них нам необходимо выразить базисные.

Используя так называемый обратный ход, разбираем систему снизу вверх, для этого сначала выражаем $y_3$ из нижней строчки системы:

$5y_3 – 4y_4 = 1$

$5y_3 = 4y_4 + 1$

$y_3 = \frac{4/5}y_4 + \frac{1}{5}$.

Теперь в верхнее уравнение системы $2y_1 + 3y_2 + y_4 = 1$ подставляем выраженное $y_3$: $2y_1 + 3y_2 - (\frac{4}{5}y_4 + \frac{1}{5}) + y_4 = 1$

Выражаем $y_1$ через свободные переменные $y_2$ и $y_4$:

$2y_1 + 3y_2 - \frac{4}{5}y_4 - \frac{1}{5} + y_4 = 1$

$2y_1 = 1 – 3y_2 + \frac{4}{5}y_4 + \frac{1}{5} – y_4$

$2y_1 = -3y_2 - \frac{1}{5}y_4 + \frac{6}{5}$

$y_1 = -1.5x_2 – 0.1y_4 + 0.6$

Решение готово.

Пример 1

Решить слау методом Гаусса. Примеры. Пример решения системы линейных уравнений заданных матрицей 3 на 3 используя метод Гаусса

$\begin{cases} 4x_1 + 2x_2 – x_3 = 1 \\ 5x_1 + 3x_2 - 2x^3 = 2\\ 3x_1 + 2x_2 – 3x_3 = 0 \end{cases}$

Запишем нашу систему в виде расширенной матрицы:

$\begin{array}{ccc|c} 4 & 2 & -1 & 1 \\ 5 & 3 & -2 & 2 \\ 3 & 2 & -3 & 0\\ \end{array}$

Теперь для удобства и практичности нужно преобразовать матрицу так, чтобы в верхнем углу крайнего столбца была $1$.

Для этого к 1-ой строчке нужно прибавляем строчку из середины, умноженную на $-1$, а саму среднюю строчку записываем как есть, выходит:

$\begin{array}{ccc|c} -1 & -1 & 1 & -1 \\ 5 & 3 & -2 & 2 \\ 3 & 2 & -3 & 0\\ \end{array}$

$\begin{array}{ccc|c} -1 & -1 & 1 & -1 \\ 0 & -2 & 3 & -3 \\ 0 & -1 & 0 & -3\\ \end{array}$

Домножим верхнюю и последнюю строчки на $-1$, а также поменяем местами последнюю и среднюю строки:

$\begin{array}{ccc|c} 1 & 1 & -1 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & -2 & 3 & -3\\ \end{array}$

$\begin{array}{ccc|c} 1 & 1 & -1 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 3 & 3\\ \end{array}$

И разделим последнюю строчку на $3$:

$\begin{array}{ccc|c} 1 & 1 & -1 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 1\\ \end{array}$

Получаем следующую систему уравнений, равносильную исходной:

$\begin{cases} x_1 + x_2 – x_3 = 1\\ x_2 = 3 \\ x_3 = 1 \end{cases}$

Из верхнего уравнения выражаем $x_1$:

$x1 = 1 + x_3 – x_2 = 1 + 1 – 3 = -1$.

Пример 2

Пример решения системы, заданной с помощью матрицы 4 на 4 методом Гаусса

$\begin{array}{cccc|c} 2 & 5 & 4 & 1 & 20 \\ 1 & 3 & 2 & 1 & 11 \\ 2 & 10 & 9 & 7 & 40\\ 3 & 8 & 9 & 2 & 37 \\ \end{array}$.

В начале меняем местами верхнюю исследующую за ней строчки, чтобы получить в левом верхнем углу $1$:

$\begin{array}{cccc|c} 1 & 3 & 2 & 1 & 11 \\ 2 & 5 & 4 & 1 & 20 \\ 2 & 10 & 9 & 7 & 40\\ 3 & 8 & 9 & 2 & 37 \\ \end{array}$.

Теперь умножим верхнюю строчку на $-2$ и прибавим ко 2-ой и к 3-ьей. К 4-ой прибавляем 1-ую строку, домноженную на $-3$:

$\begin{array}{cccc|c} 1 & 3 & 2 & 1 & 11 \\ 0 & -1 & 0 & -1 & -2 \\ 0 & 4 & 5 & 5 & 18\\ 0 & -1 & 3 & -1 & 4 \\ \end{array}$

Теперь к строке с номером 3 прибавляем строку 2, умноженную на $4$, а к строке 4 прибавляем строку 2, умноженную на $-1$.

$\begin{array}{cccc|c} 1 & 3 & 2 & 1 & 11 \\ 0 & -1 & 0 & -1 & -2 \\ 0 & 0 & 5 & 1 & 10\\ 0 & 0 & 3 & 0 & 6 \\ \end{array}$

Домножаем строку 2 на $-1$, а строку 4 делим на $3$ и ставим на место строки 3.

$\begin{array}{cccc|c} 1 & 3 & 2 & 1 & 11 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 2\\ 0 & 0 & 5 & 1 & 10 \\ \end{array}$

Теперь прибавляем к последней строке предпоследнюю, домноженную на $-5$.

$\begin{array}{cccc|c} 1 & 3 & 2 & 1 & 11 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 2\\ 0 & 0 & 0 & 1 & 0 \\ \end{array}$

Решаем полученную систему уравнений:

$\begin{cases} m = 0 \\ g = 2\\ y + m = 2\ \ x + 3y + 2g + m = 11\end{cases}$

Одним из универсальных и эффективных методов реше­ния линейных алгебраических систем является метод Гаусса , состо­ящий в последовательном исключении неизвестных.

Напомним, две системы называются эквивалентными (равносильными), если множества их решений совпадают. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой и наоборот. Эквивалентные системы получаются приэлементарных преобразованиях уравнений системы:

    умножение обеих частей уравнения на число отличное от нуля;

    прибавление к некоторому уравнению соответствующих частей другого уравнения, умноженных на число отличное от нуля;

    перестановка двух уравнений.

Пусть дана система уравнений

Процесс решения этой системы по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система с помощью элементарных преобразований приводится к ступен­чатому , илитреугольному виду, а на втором этапе (обратный ход) идет последовательное, начиная с последнего по номеру переменного, определение неизвестных из полученной ступенчатой системы.

Предположим, что коэффициент данной системы
, в против­ном случае в системе первую строку можно поменять местами с любой другой строкой так, чтобы коэффициент прибыл отличен от нуля.

Преобразуем систему, исключив неизвестное во всех уравне­ниях, кроме первого. Для этого умножим обе части первого уравнения наи сложим почленно со вторым уравнением системы. Затем умножим обе части первого уравнения наи сложим с третьим уравнением системы. Продолжая этот процесс, получим эквивалент­ную систему

Здесь
– новые значения коэффициентов и свободных членов, которые получаются после первого шага.

Аналогичным образом, считая главным элементом
, исклю­чим неизвестноеиз всех уравнений системы, кроме первого и второго. Продолжим этот процесс, пока это возможно, в результате получим ступенчатую систему

,

где ,
,…,– главные элементы системы
.

Если в процессе приведения системы к ступенчатому виду появятся уравнения , т. е. равенства вида
, их отбрасывают, так как им удовлетворяют любые наборы чисел
. Если же при
появится уравнение вида, которое не имеет решений, то это свидетельствует о несовместности системы.

При обратном ходе из последнего уравнения преобразованной сту­пенчатой системы выражается первое неизвестное через все остальные неизвестные
, которые называютсвободными . Затем выражение переменнойиз последнего уравнения системы подставляется в предпоследнее уравнение и из него выражается переменная
. Аналогичным образом последовательно определяются переменные
. Переменные
, выраженные через свободные переменные, называютсябазисными (зависимыми). В результате получается общее решение системы линейных уравнений.

Чтобы найти частное решение системы, свободным неизвестным
в общем решении придаются произвольные значения и вычисляются значения переменных
.

Технически удобнее подвергать элементарным преобразованиям не сами уравнения системы, а расширенную матрицу системы

.

Метод Гаусса - универсальный метод, который позволяет решать не только квадратные, но и прямоугольные системы, в которых число неизвестных
не равно числу уравнений
.

Достоинство этого метода состоит также в том, что в процессе решения мы одновременно исследуем систему на совместность, так как, приведя расширенную матрицу
к ступенчатому виду, легко определить ранги матрицыи расширенной матрицы
и применитьтеорему Кронекера - Капелли .

Пример 2.1 Методом Гаусса решить систему

Решение . Число уравнений
и число неизвестных
.

Составим расширенную матрицу системы, приписав справа от матрицы коэффициентов столбец свободных членов.

Приведём матрицу к треугольному виду; для этого будем получать «0» ниже элементов, стоящих на главной диагонали с помощью элементарных преобразований.

Чтобы получить «0» во второй позиции первого столбца, умножим первую строку на (-1) и прибавим ко второй строке.

Это преобразование запишем числом (-1) против первой строки и обозначим стрелкой, идущей от первой строки ко второй строке.

Для получения «0» в третьей позиции первого столбца, умножим первую строку на (-3) и прибавим к третьей строке; покажем это действие с помощью стрелки, идущей от первой строки к третьей.




.

В полученной матрице, записанной второй в цепочке матриц, получим «0» во втором столбце в третьей позиции. Для этого умножили вторую строку на (-4) и прибавили к третьей. В полученной матрице вторую строку умножим на (-1), а третью - разделим на (-8). Все элементы этой матрицы, лежащие ниже диагональных элементов - нули.

Так как , система является совместной и определенной.

Соответствующая последней матрице система уравнений имеет треугольный вид:

Из последнего (третьего) уравнения
. Подставим во второе уравнение и получим
.

Подставим
и
в первое уравнение, найдём


.

Пусть дана система , ∆≠0. (1)
Метод Гаусса – это метод последовательного исключения неизвестных.

Суть метода Гаусса состоит в преобразовании (1) к системе с треугольной матрицей , из которой затем последовательно (обратным ходом) получаются значения всех неизвестных. Рассмотрим одну из вычислительных схем. Эта схема называется схемой единственного деления. Итак, рассмотрим эту схему. Пусть a 11 ≠0 (ведущий элемент) разделим на a 11 первое уравнение. Получим
(2)
Пользуясь уравнением (2), легко исключить неизвестные x 1 из остальных уравнений системы (для этого достаточно из каждого уравнения вычесть уравнение (2) предварительно умноженное на соответствующий коэффициент при x 1), то есть на первом шаге получим
.
Иными словами, на 1 шаге каждый элемент последующих строк, начиная со второй, равен разности между исходным элементом и произведением его «проекции» на первый столбец и первую (преобразованную) строку.
Вслед за этим оставив первое уравнение в покое, над остальными уравнениями системы, полученной на первом шаге, совершим аналогичное преобразование: выберем из их числа уравнение с ведущим элементом и исключим с его помощью из остальных уравнений x 2 (шаг 2).
После n шагов вместо (1) получим равносильную систему
(3)
Таким образом, на первом этапе мы получим треугольную систему (3). Этот этап называется прямым ходом.
На втором этапе (обратный ход) мы находим последовательно из (3) значения x n , x n -1 , …, x 1 .
Обозначим полученное решение за x 0 . Тогда разность ε=b-A·x 0 называется невязкой .
Если ε=0, то найденное решение x 0 является верным.

Вычисления по методу Гаусса выполняются в два этапа:

  1. Первый этап называется прямым ходом метода. На первом этапе исходную систему преобразуют к треугольному виду.
  2. Второй этап называется обратным ходом. На втором этапе решают треугольную систему, эквивалентную исходной.
Коэффициенты а 11 , а 22 , …, называют ведущими элементами.
На каждом шаге предполагалось, что ведущий элемент отличен от нуля. Если это не так, то в качестве ведущего можно использовать любой другой элемент, как бы переставив уравнения системы.

Назначение метода Гаусса

Метод Гаусса предназначен для решения систем линейных уравнений. Относится к прямым методам решения.

Виды метода Гаусса

  1. Классический метод Гаусса;
  2. Модификации метода Гаусса. Одной из модификаций метода Гаусса является схема с выбором главного элемента. Особенностью метода Гаусса с выбором главного элемента является такая перестановка уравнений, чтобы на k -ом шаге ведущим элементом оказывался наибольший по модулю элемент k -го столбца.
  3. Метод Жордано-Гаусса;
Отличие метода Жордано-Гаусса от классического метода Гаусса состоит в применении правила прямоугольника , когда направление поиска решения происходит по главной диагонали (преобразование к единичной матрице). В методе Гаусса направление поиска решения происходит по столбцам (преобразование к системе с треугольной матрицей).
Проиллюстрируем отличие метода Жордано-Гаусса от метода Гаусса на примерах.

Пример решения методом Гаусса
Решим систему:

Для удобства вычислений поменяем строки местами:

Умножим 2-ую строку на (2). Добавим 3-ую строку к 2-ой

Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой

Из 1-ой строки выражаем x 3:
Из 2-ой строки выражаем x 2:
Из 3-ой строки выражаем x 1:

Пример решения методом Жордано-Гаусса
Эту же СЛАУ решим методом Жордано-Гаусса.

Последовательно будем выбирать разрешающий элемент РЭ, который лежит на главной диагонали матрицы.
Разрешающий элемент равен (1).



НЭ = СЭ - (А*В)/РЭ
РЭ - разрешающий элемент (1), А и В - элементы матрицы, образующие прямоугольник с элементами СТЭ и РЭ.
Представим расчет каждого элемента в виде таблицы:

x 1 x 2 x 3 B
1 / 1 = 1 2 / 1 = 2 -2 / 1 = -2 1 / 1 = 1


Разрешающий элемент равен (3).
На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.
Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
x 1 x 2 x 3 B
0 / 3 = 0 3 / 3 = 1 1 / 3 = 0.33 4 / 3 = 1.33


Разрешающий элемент равен (-4).
На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.
Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
Представим расчет каждого элемента в виде таблицы:
x 1 x 2 x 3 B
0 / -4 = 0 0 / -4 = 0 -4 / -4 = 1 -4 / -4 = 1


Ответ : x 1 = 1, x 2 = 1, x 3 = 1

Реализация метода Гаусса

Метод Гаусса реализован на многих языках программирования, в частности: Pascal, C++, php, Delphi , а также имеется реализация метода Гаусса в онлайн режиме .

Использование метода Гаусса

Применение метода Гаусса в теории игр

В теории игр при отыскании максиминной оптимальной стратегии игрока составляется система уравнений, которая решается методом Гаусса.

Применение метода Гаусса при решении дифференциальных уравнений

Для поиска частного решения дифференциального уравнения сначала находят производные соответствующей степени для записанного частного решения (y=f(A,B,C,D)), которые подставляют в исходное уравнение. Далее, чтобы найти переменные A,B,C,D составляется система уравнений, которая решается методом Гаусса.

Применение метода Жордано-Гаусса в линейном программировании

В линейном программировании, в частности в симплекс-методе для преобразования симплексной таблицы на каждой итерации используется правило прямоугольника, в котором используется метод Жордано-Гаусса.

Решение систем линейных уравнений методом Гаусса. Пусть нам требуется найти решение системы из n линейных уравнений с n неизвестными переменными
определитель основной матрицы которой отличен от нуля.

Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: сначала исключается x 1 из всех уравнений системы, начиная со второго, далее исключается x 2 из всех уравнений, начиная с третьего, и так далее, пока в последнем уравнении останется только неизвестная переменная x n . Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называется прямым ходом метода Гаусса . После завершения прямого хода метода Гаусса из последнего уравнения находитсяx n , с помощью этого значения из предпоследнего уравнения вычисляется x n-1 , и так далее, из первого уравнения находится x 1 . Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называется обратным ходом метода Гаусса .

Кратко опишем алгоритм исключения неизвестных переменных.

Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x 1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на , к третьему уравнению прибавим первое, умноженное на , и так далее, к n-ому уравнению прибавим первое, умноженное на . Система уравнений после таких преобразований примет вид

где , а .

К такому же результату мы бы пришли, если бы выразили x 1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x 1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке

Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-ому уравнению прибавим второе, умноженное на . Система уравнений после таких преобразований примет вид

где , а . Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x 3 , при этом действуем аналогично с отмеченной на рисунке частью системы

Так продолжаем прямой ход метода Гаусса пока система не примет вид

С этого момента начинаем обратный ход метода Гаусса: вычисляем x n из последнего уравнения как , с помощью полученного значения x n находим x n-1 из предпоследнего уравнения, и так далее, находим x 1 из первого уравнения.


Пример.

Решите систему линейных уравнений методом Гаусса.

Здесь вы сможете бесплатно решить систему линейных уравнений методом Гаусса онлайн больших размеров в комплексных числах с очень подробным решением. Наш калькулятор умеет решать онлайн как обычную определенную, так и неопределенную систему линейных уравнений методом Гаусса, которая имеет бесконечное множество решений. В этом случае в ответе вы получите зависимость одних переменных через другие, свободные. Также можно проверить систему уравнений на совместность онлайн, используя решение методом Гаусса.

Размер матрицы: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 X 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

О методе

При решении системы линейных уравнений онлайн методом Гаусса выполняются следующие шаги.

  1. Записываем расширенную матрицу.
  2. Фактически решение разделяют на прямой и обратный ход метода Гаусса. Прямым ходом метода Гаусса называется приведение матрицы к ступенчатому виду. Обратным ходом метода Гаусса называется приведение матрицы к специальному ступенчатому виду. Но на практике удобнее сразу занулять то, что находится и сверху и снизу рассматриваемого элемента. Наш калькулятор использует именно этот подход.
  3. Важно отметить, что при решении методом Гаусса, наличие в матрице хотя бы одной нулевой строки с НЕнулевой правой частью (столбец свободных членов) говорит о несовместности системы. Решение линейной системы в таком случае не существует.

Чтобы лучше всего понять принцип работы алгоритма Гаусса онлайн введите любой пример, выберите "очень подробное решение" и посмотрите его решение онлайн.