По картинам

Хранение времени астрономия. Глава шестая. Хранение и передача точного времена. Это делается по сигналам точного времени, передаваемым астрономическими обсерваториями, а те в свою очередь проверяют часы по звездам. В астрономических наблюдениях использует

Точное время

Для измерения коротких промежутков времени в астрономии основной единицей является средняя длительность солнечных суток, т.е. средний промежуток времени между двумя верхними (или нижними) кульминациями центра Солнца. Среднее значение приходится использовать, потому что в течение года длительность солнечных суток слегка колеблется. Это связано с тем, что Земля обращается вокруг Солнца не по кругу, а по эллипсу и скорость ее движения при этом немного меняется. Это и вызывает небольшие неравномерности в видимом движении Солнца по эклиптике в течение года.

Момент верхней кульминации центра Солнца, как мы уже говорили, называется истинным полднем. Но для проверки часов, для определения точного времени нет надобности отмечать по ним именно момент кульминации Солнца. Удобнее и точнее отмечать моменты кульминации звезд, так как разность моментов кульминации любой звезды и Солнца точно известна для любого времени. Поэтому для определения точного времени с помощью специальных оптических приборов отмечают моменты кульминаций звезд и проверяют по ним правильность хода часов, «хранящих» время. Определяемое таким образом время было бы абсолютно точным, если бы наблюдаемое вращение небосвода происходило со строго постоянной угловой скоростью. Однако оказалось, что скорость вращения Земли вокруг оси, а следовательно и видимое вращение небесной сферы, испытывает со временем очень небольшие изменения. Поэтому для «хранения» точного времени сейчас используются специальные атомные часы, ход которых контролируется колебательными процессами в атомах, происходящими на неизменной частоте. Часы отдельных обсерваторий сверяются по сигналам атомного времени. Сравнение времени, определяемого по атомным часам и по видимому движению звезд, позволяет исследовать неравномерности вращения Земли.

Определение точного времени, его хранение и передача по радио всему населению составляют задачу службы точного времени, которая существует во многих странах.

Сигналы точного времени по радио принимают штурманы морского и воздушного флота, многие научные и производственные организации, нуждающиеся в знании точного времени. Знать точное время нужно, в частности, и для определения географических долгот разных пунктов земной поверхности.

Счет времени. Определение географической долготы. Календарь

Из курса физической географии СССР вам известны понятия местного, поясного и декретного счета времени, а также что разность географических долгот двух пунктов определяют по разности местного времени этих пунктов. Эта задача решается астрономическими методами, использующими наблюдения звезд. На основании определения точных координат отдельных пунктов производится картографирование земной поверхности.

Для счета больших промежутков времени люди с древних пор использовали продолжительность либо лунного месяца, либо солнечного года, т.е. продолжительность оборота Солнца по эклиптике. Год определяет периодичность сезонных изменений. Солнечный год длится 365 солнечных суток 5 часов 48 минут 46 секунд. Он практически несоизмерим с сутками и с длиной лунного месяца - периодом смены лунных фаз (около 29,5 суток). Это и составляет трудность создания простого и удобного календаря. За многовековую историю человечества создавалось и использовалось много различных систем календарей. Но все их можно разделить на три типа: солнечные, лунные и лунно-солнечные. Южные скотоводческие народы пользовались обычно лунными месяцами. Год, состоящий из 12 лунных месяцев, содержал 355 солнечных суток. Для согласования счета времени по Луне и по Солнцу приходилось устанавливать в году то 12, то 13 месяцев и вставлять в год добавочные дни. Проще и удобнее был солнечный календарь, применявшийся еще в Древнем Египте. В настоящее время в большинстве стран мира принят тоже солнечный календарь, но более совершенного устройства, называемый григорианским, о котором говорится дальше.

При составлении календаря необходимо учитывать, что продолжительность календарного года должна быть как можно ближе к продолжительности оборота Солнца по эклиптике и что календарный год должен содержать целое число солнечных суток, так как неудобно начинать год в разное время суток.

Этим условиям удовлетворял календарь, разработанный александрийским астрономом Созигеном и введенный в 46 г. до н.э. в Риме Юлием Цезарем. Впоследствии, как вам известно, из курса физической географии, он получил название юлианского или старого стиля. В этом календаре годы считаются трижды подряд по 365 суток и называются простыми, следующий за ними год - в 366 суток. Он называется високосным. Високосными годами в юлианском календаре являются те годы, номера которых без остатка делятся на 4.

Средняя продолжительность года по этому календарю составляет 365 суток 6 ч, т.е. она примерно на 11 мин длиннее истинной. В силу этого старый стиль отставал от действительного течения времени примерно на 3 суток за каждые 400 лет.

В григорианском календаре (новом стиле), введенном в СССР в 1918 г. и еще ранее принятом в большинстве стран, годы, оканчивающиеся на два нуля, за исключением 1600, 2000, 2400 и т.п. (т.е. тех, у которых число сотен делится на 4 без остатка), не считаются високосными. Этим и исправляют ошибку в 3 суток, накапливающуюся за 400 лет. Таким образом, средняя продолжительность года в новом стиле оказывается очень близкой к периоду обращения Земли вокруг Солнца.

К XX в. разница между новым стилем и старым (юлианским) достигла 13 суток. Поскольку в нашей стране новый стиль был введен только в 1918 г., то Октябрьская революция, совершенная в 1917 г. 25 октября (по старому стилю), отмечается 7 ноября (по новому стилю).

Разница между старым и новым стилями в 13 суток сохранится и в XXI в., а в XXII в. возрастет до 14 суток.

Новый стиль, конечно, не является совершенно точным, но ошибка в 1 сутки накопится по нему только через 3300 лет.

Каждое астрономическое наблюдение должно сопровождаться данными о моменте времени его выполнения. Точность момента времени может быть различной, в зависимости от требований и свойств наблюдаемого явления. Так, например, при обычных наблюдениях метеоров и переменных звезд вполне достаточно знать момент с точностью до минуты. Наблюдения же солнечных затмений, покрытий звезд Луной и в особенности наблюдения за движением искусственных спутников Земли требуют отметки моментов с точностью не меньшей, чем до десятой доли секунды. Точные же астрометрические наблюдения суточного вращения небесной сферы заставляют применять особые способы регистрации моментов времени с точностью до 0,01 и даже 0,005 секунды!

Поэтому одна из основных задач практической астрономии состоит в получении из наблюдений точного времени, хранении его и сообщении данных о времени потребителям.

Для хранения времени астрономы располагают очень точными часами, которые регулярно проверяют, определяя моменты кульминаций звезд при помощи специальных инструментов. Передача же сигналов точного времени по радио позволила им организовать всемирную Службу времени, т. е. связать все обсерватории, занимающиеся наблюдениями такого рода, в одну систему.

В обязанность Служб времени, помимо подачи в эфир сигналов точного времени, входит также передача упрощенных сигналов, которые всем радиослушателям хорошо известны. Это шесть коротких сигналов, «точек», которые подаются перед началом нового часа. Момент последней «точки», с точностью до сотой доли секунды, совпадает с началом нового часа. Любителю астрономии рекомендуется пользоваться этими сигналами для проверки своих часов. Проверяя часы, мы не должны их переводить, так как при этом механизм портите я, а астроном должен беречь свои часы, так как это один из основных его инструментов. Он должен определять «поправку часов» - разность между точным временем и их показаниями. Эти поправки должны систематически определяться и записываться в дневник наблюдателя; их дальнейшее изучение позволит определить ход часов и хорошо их исследовать.

Конечно, желательно иметь в своем распоряжении возможно лучшие часы. Что же надо понимать под термином «хорошие часы»?

Необходимо, чтобы они возможно точнее сохраняли свой ход. Сравним между собой два экземпляра обычных карманных часов:

Положительный знак поправки означает, что для получения точного времени надо к показанию часов прибавить поправку.

В двух половинах таблички приведены записи поправок часов. Вычитая из нижней поправки верхнюю и деля на количество прошедших между определениями суток, мы получаем суточный ход часов. Данные о ходе приведены в той же таблице.

Почему мы назвали одни часы плохими, а другие хорошими? У первых часов поправка близка к нулю, но их ход меняется нерегулярно. У вторых - поправка велика, но ход равномерен. Первые часы пригодны для таких наблюдений, которые не требуют отметки времени точнее, чем до минуты. Интерполировать их показания нельзя, а проверять их надо несколько раз в ночь.

Вторые, «хорошие часы», пригодны для выполнения более сложных наблюдений. Конечно, полезно их проверять чаще, но можно интерполировать их показания для промежуточных моментов. Покажем это на примере. Допустим, что наблюдение сделано 5 ноября в 23 ч. 32 м. 46 с. по нашим часам. Проверка часов, произведенная в 17 часов 4 ноября, дала поправку +2 м. 15 с. Суточный ход, как видно из таблицы, +5,7 с. С 17 часов 4 ноября до момента наблюдения прошли 1 сутки и 6,5 часа или 1,27 суток. Умножая это число на суточный ход, получаем +7,2 с. Поэтому поправка часов в момент наблюдения была равна не 2 м. 15 с., а +2 м. 22 с. Ее мы и прибавляем к моменту наблюдения. Итак, наблюдение произведено 5 ноября в 23 ч. 35 м. 8 с.

1. Местное время. Время, измеренное на данном географическом меридиане, называется местным временем этого меридиана.Для всех мест на одном и том же меридиане часовой угол точки весеннего равноденствия (или Солнца, или среднего солнца) в какой-либо момент один и тот же. Поэтому на всем географическом меридиане местное время (звездное или солнечное) в один и тот же момент одинаково.

2. Всемирное время. Местное среднее солнечное время гринвичского меридиана называется всемирным временем.

Местное среднее время любого пункта на Земле всегда равно всемирному времени в этот момент плюс долгота данного пункта, выраженная в часовой мере и считаемая положительной к востоку от Гринвича.

3. Поясное время. В 1884 г. была предложена поясная система счета среднего времени: счет времени ведется только на 24 основных географических меридианах, расположенных друг от друга по долготе точно через 15°, приблизительно посередине каждого часового пояса. Часовые пояса занумерованы от 0 до 23. За основной меридиан нулевого пояса принят гринвичский.

4. Декретное время. В целях более рационального распределения электроэнергии, идущей на освещение предприятий и жилых помещений, и наиболее полного использования дневного света в летние месяцы года во многих странах переводят часовые стрелки часов, идущих по поясному времени, на 1h вперед.

5.Вследствие неравномерного вращения Земли средние сутки, оказываются величиной непостоянной. Поэтому в астрономии пользуются двумя системами счета времени: неравномерным временем, которое получается из наблюдений и определяется действительным вращением Земли, и равномерным временем, которое является аргументом при вычислении эфемерид планет и определяется по движению Луны и планет. Равномерное время называется ньютоновским или эфемеридным временем.

9.Календарь. Типы календарей. История современного календаря. Юлианские дни.

Система счета длительных промежутков времени называется календарем. Все календари можно разделить на три главных типа: солнечные, лунные и лунно-солнечные. В основе солнечных календарей лежит продолжительность тропического года, в основе лунных - продолжительность лунного, месяца, лунно-солнечные календари основаны на обоих этих периодах. Современный календарь, принятый в большинстве стран, является солнечным календарем. Основной единицей меры времени солнечных календарей является тропический год. Продолжительность тропического года в средних солнечных сутках равна 365d5h48m46s.

В юлианском календаре продолжительность календарного года считается равной 365 средним солнечным суткам три года подряд, а каждый четвертый год содержит 366 суток. Годы продолжительностью в 365 суток называются простыми, а в 366 суток - високосными. В високосном году в феврале 29 дней, в простом - 28.

Григорианский календарь возник в результате реформы юлианского календаря. Дело в том, что расхождение юлианского календаря со счетом тропическими годами оказалось неудобным для церковного летосчисления. По правилам христианской церкви праздник пасхи должен был наступать в первое воскресенье после весеннего полнолуния, т.е. первого полнолуния после дня весеннего равноденствия.

Григорианский календарь был введен в большинстве западных стран в течение XVI-XVII вв. В России перешли на новый стиль только в 1918 г.

Вычитанием более ранней даты одного события из более поздней даты другого, данных в одной системе летосчисления, можно вычислить число суток, прошедших между этими событиями. При этом необходимо учитывать число високосных годов. Эта задача удобнее решается с помощью юлианского периода, или юлианских дней. Началом каждого юлианского дня считается средний гринвичский полдень. Начало счета юлианских дней - условное и предложено в XVI в. н.э. Скалигером, как начало большого периода в 7980 лет, являющегося произведением трех меньших периодов: периода в 28 лет,19,15 Период в 7980 лет Скалигер назвал «юлианским» в честь своего отца Юлия.

Обыкновенные смертные редко задумываются над тем, что такое время. Они узнают его по своим часам, которые проверяются по ТВ или по радио.

Однако там часы тоже надо проверять.

Это делается по сигналам точного времени, передаваемым астрономическими обсерваториями, а те в свою очередь проверяют часы по звездам. В астрономических наблюдениях используется звездное время.

Астрономическое время и часовые пояса

ЗВЕЗДНОЕ ВРЕМЯ

Звездное время, это время, связанное с вращением Земли не по отношению к Солнцу, а по отношению к определенной точке небесной сферы - точке весеннего равноденствия. Период между двумя последовательными кульминациями этой точки составляет звездные сутки, с которыми мы уже давно знакомы.

Итак, звездное время является фундаментом, на котором покоится вся наша система счета времени, хотя многие об этом и не подозревают, так как в основе нашей жизни лежит солнечное время.

СОЛНЕЧНОЕ ВРЕМЯ

Термин солнечное время не совсем точен, так как существуют два солнечных времени: истинное солнечное время и среднее солнечное время. Особым видом последнего является поясное время.

Чтобы понять, что такое поясное время, мы сначала должны узнать, что представляет собой истинное солнечное время.

ИСТИННОЕ СОЛНЕЧНОЕ ВРЕМЯ

Это то время, которое определяется по солнечным часам.

На солнечных часах - полдень, когда Солнце пересекает меридиан. Интервал времени между двумя последовательными прохождениями через меридиан есть истинные солнечные сутки.

ИСТИННЫЕ СОЛНЕЧНЫЕ СУТКИ

Солнечные сутки начинаются и. заканчиваются в полдень. Это простой и естественный способ измерения времени, им пользовались на протяжении многих столетий.

Однако в наш век, когда требуется знать точное время и нужно, чтобы счет времени был равномерным, такой способ хранения времени не годится, так как истинные солнечные сутки имеют разную продолжительность.

Сейчас единица времени - секунда - отсчитывается по промежутку времени, за который происходит 9192631770 колебаний электромагнитного излучения, частота которого равна частоте, которую имеет определенная линия поглощения в спектре атомов цезия.

Такой отсчет секунды значительно точнее, чем вычисление с помощью астрономических наблюдений.

Истинное суточное движение Солнца по небу неравномерно на протяжении года.

Иногда кажется, что Солнце перемещается немного быстрее, иногда - немного медленнее, и интервалы времени между двумя последовательными полуднями различны.

Они могут отличаться почти на целую минуту.

Поэтому если наши часы проверять по Солнцу, их каждый день придется переводить немного вперед или назад в соответствии с положением Солнца, что, несомненно, было бы очень неудобно с практической точки зрения.

Это происходит, в частности, из-за того, что орбита Земли - не правильная окружность, а эллипс, водном из фокусов которого находится Солнце.

Поэтому Земля расположена иногда ближе, а иногда дальше от Солнца. Когда Земля ближе к Солнцу, она движется по орбите быстрее, поэтому кажется, что Солнце движется по небу немного быстрее. Отклонение от окружности невелико - всего около 3%.

В наиболее близкой к Солнцу точке - перигелии (греческое peri - около, Helios - Солнце) - Земля на 5 миллионов километров ближе к Солнцу, чем в афелии (по латыни apo - от), в то время как среднее расстояние до Солнца примерно 150 миллионов километров.

В северном полушарии от весеннего до осеннего равноденствия проходит примерно 186 дней, а с осени до весны - 179 дней (разница около 3%). В нашем полушарии лето приблизительно на неделю длиннее, чем зима.

Кроме того, солнечное время зависит от места наблюдения. Истинный полдень смещается примерно на одну минуту с изменением долготы на каждые четверть градуса. Чтобы избежать первого из этих двух неудобств - неравной длины истинных солнечных суток, астрономы ввели среднее солнечное время.

СРЕДНЕЕ СОЛНЕЧНОЕ ВРЕМЯ

Среднее солнечное время, основой которого являются средние солнечные сутки, т. е. солнечные сутки, усредненные за год.

Именно средние солнечные сутки мы имеем в виду, когда говорим, что звездные сутки на 3 минуты 55,91 секунды короче солнечных (т. е. минут и секунд солнечных суток). В звездных сутках 24 звездных часа, которые, конечно, так же как и звездные минуты и секунды, короче солнечных часов, минут и секунд.

Чтобы сутки кончались не в полдень, а в полночь, было введено гражданское время; оно равно среднему солнечному времени плюс 12 часов. Таким образом, гражданские сутки начинаются и кончаются в полночь.

Так что если ваши часы идут достаточно точно, они указывают время средних гражданских суток, т. е. отсчитывают часы, минуты и секунды средних гражданских суток.

Остается второе неудобство - хотя продолжительность средних солнечных суток постоянна, момент их начала и конца зависит от места наблюдения. Полдень по местному гражданскому времени сдвигается на одну минуту при изменении долготы на четверть градуса.

При такой системе все большие и малые города и селения имели свое местное время и это вызывало бесконечные недоразумения до тех пор, пока повсеместно не ввели поясное время.

Мы отсчитываем наши сутки от полуночи, иначе нам приходилось бы садиться обедать во вторник, а вставать из-за стола в среду.

ПОЯСНОЕ ВРЕМЯ

Это был медленный процесс, начавшийся с международного конгресса в Вашингтоне в 1884 г. и продолжавшийся десятки лет. В результате земной шар разделен на 24 часовых пояса, каждый шириной 15′ по долготе (с незначительными отклонениями, сделанными по практическим соображениям).

От пояса к поясу время меняется точно на один час.

Время в каждом поясе равно среднему гражданскому времени на среднем меридиане пояса. На этом меридиане поясное время совпадает с местным гражданским временем, но у границ пояса, которые находятся на расстоянии 7.5′ от среднего меридиана, поясное и местное время отличаются примерно на 30 минут.

Около восточной границы пояса ваши часы, показывающие поясное время, на 30 минут отстают от местного гражданского времени, а около западной границы - на 30 минут спешат.

Это довольно заметно, если определять время по положению звезд, хотя в других случаях разница не ощутима.

В 1930 г. в СССР было введено декретное время, по которому все часы были переведены на 1 час вперед, т. е. декретное время опережает поясное на 1 час.

Кстати, а древний календарь майя, завершение самого большого цикла которого приходится предположительно на 21 декабря 2012 года, был более точным, чем наш современный календарь.

******

Служба точного времени
Задачи службы точного времени - определить точное время, уметь его сохранить и донести до потребителя. Если представить, что стрелка часов это оптическая ось телескопа, вертикально направленного в небо, то циферблат - это звёзды, одна за другой попадающие в поле зрения этого телескопа. Регистрация моментов прохождения звёзд через визир телескопа - таков общий принцип классического определения астрономического времени. Судя по дошедшим до нас мегалитическим памятникам, самым известным из которых является Стоунхендж в Англии, этот метод визирных засечек с успехом использовался ещё в бронзовом веке. Само название астрономической службы времени теперь устарело. С 1988 года эта служба называется Международная Служба Вращения Земли (International Earth Rotation Service http://hpiers.obspm.fr/eop-pc/).
Классический астрономический способ определения точного времени (Всемирное время, UT) связан с измерением угла поворота любого избранного меридиана Земли относительно "сферы неподвижных звёзд". Избранным, в итоге, оказался Гринвичский меридиан. Однако в России, например, долгое время за нулевой принимался Пулковский меридиан. Фактически любой меридиан, на котором установлен специализированный для регистрации моментов звёздных прохождений телескоп (пассажный инструмент, зенитная труба, астролябия), подходит для решения первой задачи службы точного времени. Но не любая широта является для этого оптимальной, что очевидно, например, ввиду схождения всех меридианов в географических полюсах.
Из способа определения астрономического времени очевидна его связь с определением долгот на Земле и вообще с координатными измерениями. В сущности, это единая задача координатно-временного обеспечения (КВО) . Понятна сложность этой задачи, решение которой длилось много столетий и продолжает оставаться актуальнейшей задачей геодезии, астрономии и геодинамики.
При определении UT астрономическими методами необходимо учитывать:

  • что "сферы неподвижных звёзд" не существует, т. е. координаты звёзд ("циферблат" звездных часов, определяющих и точность этих часов) надо постоянно уточнять из наблюдений,
  • что ось вращение Земли под влиянием гравитационных сил Солнца, Луны и других планет совершает сложные периодические (прецессионные и нутационные) движения, описываемые рядами из сотен гармоник,
  • что наблюдения происходят с поверхности сложно движущейся в пространстве Земли и, следовательно, необходимо учитывать параллактические и аберрационные эффекты,
  • что телескопы, на которых производятся наблюдения UT, имеют свои непостоянные погрешности, зависящие, в частности, от климатических условий и определяемые из тех же наблюдений,
  • что наблюдения происходят "на дне" атмосферного океана, искажающего истинные координаты звёзд (рефракция) часто трудно учитываемым образом,
  • что сама ось вращения "болтается" в теле Земли и это явление также как и ряд приливных эффектов и эффектов, обусловленных атмосферными влияниями на вращение Земли, определяются из самих наблюдений,
  • что вращение Земли вокруг своей оси, вплоть до 1956 года служившее эталоном времени, происходит неравномерно, что также определяется из самих наблюдений.

Для точного счета времени необходим эталон. Выбранный эталон - период вращения Земли - оказался не вполне надежным. Солнечные сутки - одна из основных единиц времени, избрана давно. Но скорость вращения Земли меняется на протяжении года, поэтому и применяются средние солнечные сутки, отличающееся от истинных до 11 минут. Из-за неравномерности движения Земли по эклиптике принятые солнечные сутки в 24 часа больше за год на 1 сутки звездных, составляющих 23 час 56 мин 4, 091 сек, в то время средние солнечные 24 час 3 мин 56, 5554 сек.
В 1930-х годах было установлено неравномерное вращение Земли вокруг своей оси. Неравномерность связана в частности: с вековым замедлением вращения Земли вследствие приливного трения от Луны и Солнца; нестационарными процессами внутри Земли. Средние звездные сутки вследствие процессии земной оси на 0,0084 с короче действительного периода вращения Земли. Приливное действие Луны тормозит вращение Земли на 0,0023с за 100 лет. Поэтому понятно, что определение секунды как единицы времени, составляющей 1/86400 часть суток, потребовало уточнения.
1900 год был принят за единицу измерения тропического года (продолжительность между двумя последовательными прохождениями центра Солнца через точку весеннего равноденствия) равного 365,242196 суток, или 365 суток 5 часов 48 минут 48,08 секунд. Через него определена продолжительность секунды =1/31556925,9747 тропического 1900 года.
В октябре 1967г в Париже 13 Генеральная конференция Международного комитета мер и весов определяет продолжительность атомного секунды - промежутка времени, за который совершается 9 192 631 770 колебаний, соответствующих частоте излечения (поглощения) атомом Цезия - 133 при резонансном переходе между двумя сверхтонкими энергетическими уровнями основного состояния атома при отсутствии возмущений от внешних магнитных полей и фиксируется как радиоизлучение с длиной волны около 3,26 см.
Точностью атомных часов - ошибка в 1с за 10000 лет. Погрешность 10-14с.
С 1 января 1972г СССР и многие страны мира перешли на атомный стандарт времени.
Транслируемые по радио сигналы точного времени передаются по атомным часам для точного определения местного времени (т.е географической долготы - местонахождения опорных пунктов, находя моменты кульминации звезд), а также для авиационной и морской навигации.
Первые сигналы точного времени по радио начали передавать станция г. Бостон (США) в 1904г, с 1907г в Германии, с 1910г в Париже (радиостанция Эйфелевой башни). В нашей стране с 1 декабря 1920г Пулковская обсерватория приступила к передачам ритмического сигнала через Петроградскую радиостанцию «Новая Голландия», а с 25 мая 1921г через Московскую Октябрьскую радиостанцию на Ходынке. Организаторами в стране радиотехническую службу времени были Николай Иванович ДНЕПРОВСКИЙ (1887-1944), Александр Павлович Константинов (1895-1937) и Павел Андреевич Азбукин (1882-1970).
Постановлением Совнаркома в 1924г при Пулковской обсерватории организован Междуведомственный комитет службы времени, который с 1928г стал публиковать бюллетени сводных моментов. В 1931г были организованы две новые службы времени в ГАИШ и ЦНИИГАиК и начала регулярную работу служба времени Ташкентской обсерватории.
В марте 1932г проведена первая астрометрическая конференция в Пулковской обсерватории на которой принято решение: о создании службы времени в СССР. В предвоенное время работало 7 служб времени, причем в Пулкове, ГАИШ и Ташкенте велись передачи ритмических сигналов времени по радио.
Наиболее точные часы, используемые службой (хранятся в подвале при постоянном давлении, температуре т.д.) были двухмаятниковые часы Шорта (точность ± 0,001с/сут), Ф.М. Федченко (± 0,0003с/сут), затем стали использовать кварцевые (с их помощью обнаружена неравномерность вращения Земли) до введения атомных часов, которые используются сейчас службой времени. Льюис Эссен (Англия) физик-экспериментатор, создатель кварцевых и атомных часов, в 1955 создал первый атомный стандарт частоты (времени) на пучке атомов цезия, в результате которого через три года возникла служба времени, основанная на атомном стандарте частоты.
По атомным эталоном США, Канады и Германии устанавливается с 1 января 1972г TAI - среднее значение атомного времени, на основе которого создана шкала UTC (универсальное всемирное координатное время), которое от среднего солнечного отличается не более чем на 1 сек (точностью ±0,90 сек). Ежегодно в UTC вводится поправка на 1 сек 31 декабря или 30 июня.
В последней четверти ХХ века для целей определения Всемирного времени использовались уже и внегалактические астрономические объекты - квазары. При этом регистрируется их широкополосный радиосигнал на двух разнесённых на тысячи километров радиотелескопах (радиоинтерферометры со сверхдлинной базой - РСДБ) в синхронизованной шкале атомных стандартах времени и частоты. Помимо этого используются системы, основанные на наблюдениях спутников (GPS - Global Positioning System, ГЛОНАСС - глобальная навигационная спутниковая система и ЛЛС - Лазерная Локация Спутников) и уголковых отражателей, установленных на Луне (Лазерная Локация Луны - ЛЛЛ).
Астрономические понятия
Астрономическое Время. До 1925 года в астрономической практике за начало средних солнечных суток принимали момент верхней кульминации (полдень) среднего солнца. Такое время называлось средним астрономическим или просто астрономическим. В качестве единицы измерения использовалась средняя солнечная секунда. С 1 января 1925 года заменено на всемирное время (UT)
Атомное время (АТ - Atomic Time) введено с 1 января 1964 года. За единицу времени принята атомная секунда, равная промежутку времени, в течение которого совершается 9 192 631 770 колебаний, соответствующих частоте излучения между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133 в отсутствии внешних магнитных полей. Носителями АТ являются более 200 атомных стандартов времени и частоты, расположенных в более чем 30 странах мира. Эти стандарты (часы) постоянно сличаются между собой через систему спутников GPS/ГЛОНАСС, с помощью чего и выводится международная шкала атомного времени (TAI). На основании сличения считается, что шкала TAI не расходится с воображаемыми абсолютно точными часами более чем на 0.1 микросекунды за год. АТ не связано с астрономическим способом определения времени, основанным на измерении скорости вращения Земли, поэтому с течением времени шкалы АТ и UT могут разойтись на значительную величину. Для исключения этого с 1 января 1972 года введено Всемирное координированное время (UTC).
Всемирное время (UT - Universal Time) используется с 1 января 1925 года вместо астрономического времени. Отсчитывается от нижней кульминации среднего солнца на меридиане Гринвича. С 1 января 1956 года определены три шкалы всемирного времени:
UT0 - всемирное время, определяемое на основе непосредственных астрономических наблюдений, т.е. время мгновенного гринвичского меридиана, положение плоскости которого характеризуется мгновенным положением полюсов Земли;
UT1 - время среднего гринвичского меридиана, определяемое средним положением полюсов Земли. Отличается от UT0 поправками на смещение географического полюса вследствие смещения тела Земли относительно оси ее вращения;
UT2 - это "сглаженное" время UT1 с поправками на сезонные изменения угловой скорости вращения Земли.
Всемирное координированное время (UTC). В основе UTC лежит шкала АТ, которая по мере необходимости, но только 1 января или 1 июля, может корректироваться вводом дополнительной отрицательной или положительной секунды так, чтобы разность между UTC и UT1 не превышала 0.8 сек. Шкала времени Российской федерации UTC(SU) воспроизводится Государственным эталоном времени и частоты и согласована со шкалой международного бюро времени UTC. В настоящее время (начало 2005 года) TAI - UTC = 32 секунды. Существует множество сайтов, где можно взять точное время, например, на сервере международной бюро Мер и Весов (BIPM) http://www.bipm.fr/en/scientific/tai/time_server.html .
Звёздные сутки - промежуток времени между двумя последовательными одноименными кульминациями точки весеннего равноденствия на одном и том же меридиане. За начало звёздных суток принят момент её верхней кульминации. Существует истинное и среднее звёздное время в зависимости от выбранной точки весеннего равноденствия. Средние звёздные сутки равны 23 часам.56 минутам 04,0905 секундам среднесолнечных суток.
Истинное солнечное время - неравномерное время, определяемое движением истинного солнца и выражаемое в долях истинных солнечных суток. Неравномерность истинного солнечного времени (уравнение времени) обусловлена 1) наклоном эклиптики к экватору и 2) неравномерностью движения солнца по эклиптике ввиду эксцентриситета орбиты Земли.
Истинные солнечные сутки - промежуток времени между двумя последовательными одноименными кульминациями истинного солнца на одном и том же меридиане. За начало истинных солнечных суток принят момент нижней кульминации (полночь) истинного солнца.
Среднее солнечное время - равномерное время, определяемое движением среднего солнца. Использовалось как эталон равномерного времени с масштабом в одну среднюю солнечную секунду (1/86400 доля средних солнечных суток) до 1956 года.
Средние солнечные сутки - промежуток времени между двумя последовательными одноименными кульминациями среднего солнца на одном и том же меридиане. За начало среднесолнечных суток принят момент нижней кульминации (полночь) среднего солнца.
Среднее (экваториальное) солнце - фиктивная точка на небесной сфере, равномерно движущаяся по экватору со среднегодовой скоростью движения истинного Солнца по эклиптике.
Среднее эклиптическое солнце - фиктивная точка на небесной сфере, равномерно движущаяся по эклиптике со среднегодовой скоростью истинного Солнца. Движение среднего эклиптического солнца по экватору неравномерно.
Точка весеннего равноденствия - та их двух точек пересечения экватора и эклиптики на небесной сфере, которую центр солнца проходит весной. Существуют истинная (движущаяся вследствие прецессии и нутации) и средняя (движущаяся только вследствие прецессии) точки весеннего равноденствия.
Тропический год - промежуток времени между двумя последовательными прохождениями среднего солнца через среднюю точку весеннего равноденствия, равен 365,24219879 среднесолнечных суток или 366,24219879 звёздных суток.
Уравнение времени - разность между истинным солнечным временем и средним солнечным временем. Она достигает +16 минут в начале ноября и -14 минут в средине февраля. Публикуется в Астрономических ежегодниках.
Эфемеридное время (ЕТ - Ephemeris time) - независимая переменная (аргумент) в небесной механике (ньютоновская теория движения небесных тел). Введено с 1 января 1960 года в астрономических ежегодниках как более равномерное, чем Всемирное время, отягощенное долгопериодическими неравномерностями во вращении Земли. Определяется из наблюдения тел солнечной системы (в основном Луны). В качестве единицы измерения принята эфемеридная секунда как 1/31556925,9747 доля тропического года для момента 1900 январь 0, 12 часов ЕТ или, иначе, как 1/86400 доля продолжительности средних солнечных суток для этого же момента.