По картинам

Георг кантор интересные истории из жизни. Георг кантор - биография, фотографии. Георг Кантор: биография. Семья

Считаются одной из важных вех в истории человеческой мысли. Теория множеств , которую он создал, является краеугольным камнем современной математики.

Георг Фердинанд Людвиг Филипп Кантор родился 3 марта 1845 года в Санкт-Петербурге, куда незадолго до его рождения эмигрировал его отец, богатый датский коммерсант. Из-за болезни легких его отцу в 1856 году пришлось эмигрировать снова, на этот раз во Франкфурт. Именно там Георг учился в нескольких частных школах. В возрасте 15 лет его приняли в училище в Висбадене.

Кантор рано проявил жаркий интерес к математике . В 1862 году он начал изучать математику наряду с философией и физикой в Берлинском университете.

Там его учителями были Леопольд Кронекер (1823-1891), Эрнст Куммер (1810-1893) и Карл Вейерштрасс (1815-1897). Последний оказал на него наибольшее влияние, а Кронекер, обучивший его азам теории чисел, впоследствии стал самым жестким критиком идей Кантора. В 1867 году Кантор получил степень доктора, а два года спустя - должность в Университете Галле, достаточно важном образовательном центре страны, который все же не входил в число наиболее престижных в Германии. Он начал работу в должности внештатного профессора, что означало, что его жалование зависело от числа студентов в классах. Лишь в 1879 году он получил должность полного профессора.

В 29 лет Кантор женился на Валли Гуттман и опубликовал свою первую работу о теории множеств в «Журнале чистой и прикладной математики», основанном Августом Креллем. В этой работе он доказал удивительный факт: несмотря на то, что множество рациональных чисел является плотным на прямой, оно является счетным, то есть число элементов в нем не превышает количество натуральных чисел. Он также доказал (окончательно оформив доказательство в 1891 году), что в этом отношении вещественные числа являются особыми, поскольку между множеством вещественных и множеством натуральных чисел нельзя установить взаимно однозначного соответствия. Это была первая попытка штурма крепости под названием «бесконечность».

1877 год также стал очень важным для Кантора: именно тогда он доказал, что, вопреки распространенному мнению, между прямой и плоскостью можно установить взаимно однозначное соответствие . Как и в 1874 году, эту статью Кантор также отправил в Журнал Крелля.

Статья встретила непреклонный отпор Кронекера, одного из редакторов журнала, которому удалось отложить публикацию до следующего года. Кронекер был убежденным противником бесконечности и признавал ее только как стенографическую запись многократно повторяемых процессов. Кантор же, напротив, изучал мир, полный истинных бесконечностей, и всякий раз рассматривал бесконечности все более сложной структуры, к примеру, трансфинитные числа , над которыми он непрерывно работал в зрелые годы.

Все указывает на то, что Кантор страдал от заболевания, которое сейчас именуют маниакально-депрессивным синдромом - болезнью эндогенного характера, при которой фазы эйфории сменяются депрессией.

Последние 20 лет жизни Кантор периодически лечился в психиатрических клиниках, куда он обращался по собственному желанию. Это не мешало ему продолжать работу и публиковать свои теории в промежутках между курсами лечения. В последний раз он был помещен в клинику в 1917 году - единственный раз против своей воли. В письмах Кантор жаловался на холод, одиночество и скудное питание. Несмотря на то, что к тому моменту его теории уже получили широкое признание научного сообщества , 6 января 1918 года он умер в одиночестве и в поистине удручающих условиях.

Георг Фердинанд Людвиг Филипп Кантор (по моему и, думаю, не только по моему мнению) - один из величайших математиков за всю историю человечества. Пафосно, может быть, чересчур, но зато искренне))

Теорию множеств (возможно, немножко не в том виде, в котором мы знаем ее сейчас), основал именно он.
В это трудно поверить, но он первый ввел в математике понятие множества и дал ему неформальное определение. И случилось это во второй половине XIX века.
Раньше множествами в математике не оперировали!
Та теория множеств, которую выдвинул Кантор впоследствии получила название Наивной теории множеств .

Понятие множества сейчас входит в число так называемых первичных, неопределяемых, понятий. Таких, как, предположим, точка в математике или информация в теории информации.
Сам Кантор определял множество следующим образом: «множество есть многое, мыслимое как единое» .

Кантор разработал программу стандартизации математики, в основу которой как раз было положено понятие множества . Любой математический объект должен был рассматриваться как «множество».
Например, натуральный ряд представляет собой множество, удовлетворяющее аксиомам Пеано. Каждое натуральное число в отдельности - тоже множество, но состоящее всего из одного элемента.

Сам термин "теория множеств" был введен в математику позднее. Кантор же называл свою теорию "Mengenlehre" - учение о множествах.

Появление Mengenlehre вызвало нешуточные битвы в математических кругах. Учение имело как горячих поклонников (среди выдающихся математиков того времени), так и ярых противников.

Но в своем первоначальном виде теория оказалась нежизнеспособна.

Вот что написано в Википедии:
Однако вскоре выяснилось, что установка Кантора на неограниченный произвол при оперировании с множествами (выраженный им самим в принципе «сущность математики состоит в её свободе») является изначально порочной. А именно, был обнаружен ряд теоретико-множественных антиномий: оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам классической логики высказываний, может быть «доказано» абсолютно любое утверждение!). Антиномии ознаменовали собой полный провал программы Кантора.

Виновником провала стал не кто иной как Бертран Рассел.
Однако теория эта успела безраздельно завладеть умами современников.

Вот что пишет о Канторе и его Mengenlehre Давид Гильберт (о котором я уже здесь рассказывала):

Никто и никогда не изгонит нас из его рая.
(с) Давид Гильберт. В защиту канторовой теории множеств.

ТЕОРИЯ МНОЖЕСТВ КАНТОРА. Кантор развил определенную технику оперирования с актуально бесконечными множествами и построил определенный аналог понятия количества для бесконечных множеств. Основой этой техники служит понятие взаимно-однозначного соответствия между элементами двух множеств. Говорят, что элементы двух множеств можно поставить во взаимно-однозначное соответствие, если каждому элементу первого множества можно поставить в соответствие элемент второго множества, разным – разные, и при этом каждый элемент второго множества будет соответствовать какому-то элементу первого. Про такие множества говорят, что они эквивалентны, что они имеют одинаковую мощность, или одинаковое кардинальное число. Если же можно доказать, что элементы множества А можно поставить во взаимно-однозначное соответствие с элементами подмножества В1 множества В, а элементы множества В нельзя поставить во взаимнооднозначное соответствие с элементами А, то тогда говорят, что мощность множества В больше мощности множества А.Эти определения применимы и к конечным множествам. В этом случае мощность представляет собой аналог конечных чисел. Но бесконечные множества имеют в этом смысле парадоксальные свойства. Бесконечное множество оказывается эквивалентным своей части, напр. так, как это происходит в т.н. «парадоксе Галилея»:

1, 2, 3, 4, ..., n, ...

2, 4, 6, 8, ..., 2n, ...

Эти парадоксы были известны давно, и именно они, в частности, служили препятствием для рассмотрения актуально бесконечных множеств. То, что здесь просто сказывается специфика актуально бесконечного, объяснял в «Парадоксах бесконечного» Больцано. Дедекинд считал это свойство актуально бесконечных множеств характеристическим.

Кантор развивает арифметику кардинальных чисел. Суммой двух кардинальных чисел является мощность объединения соответствующих им множеств, произведением – мощность т.н. множества-произведения двух данных множеств и т.д. Важнейшим оказывается переход от данного множества к множеству-степени, т.е., по определению, к множеству всех подмножеств исходного множества. Кантор доказывает основополагающую для его теории теорему: мощность множества-степени больше мощности исходного множества. Если мощность исходного множества записать через а, то в соответствии с арифметикой кардинальных чисел мощность множества-степени будет 2a, и мы имеем, следовательно, 2a >а.

Значит, переходя от некоторого бесконечного множества, напр. от множества всех натуральных чисел, имеющего мощность ℵα (обозначение Кантора) к множеству всех подмножеств этого множества, к множеству всех подмножеств этого нового множества и т.д., мы будем получать ряд множеств все более возрастающей мощности. Есть ли какой-то предел этому возрастанию? Ответить на этот вопрос можно, только введя в рассмотрение некоторые дополнительные понятия.

Оперировать с бесконечными множествами, лишенными всякой дополнительной структуры, вообще говоря, невозможно. Поэтому Кантор ввел в рассмотрение упорядоченные множества, т.е. множества, для любых двух элементов которых определено отношение «больше» > (или «меньше» <). Это отношение должно быть транзитивным: из a < b и b < с следует: а < с. Собственно, наиболее продуктивным для теории множеств является еще более узкий класс множеств: вполне упорядоченные множества. Так называются упорядоченные множества, у которых каждое подмножество имеет наименьший элемент. Вполне упорядоченные множества легко сравнивать между собой: они отображаются одно на часть другого с сохранением порядка. Символы вполне упорядоченных множеств, или ординальные (порядковые) числа, также образуют вполне упорядоченное множество, и для них также можно определить арифметические действия: сложение (вычитание), умножение, возведение в степень. Ординальные числа играют для бесконечных множеств роль порядковых чисел, кардинальные – роль количественных. Множество (бесконечное) определенной мощности можно вполне упорядочить бесконечным числом способов, каждому из которых будет соответствовать свое ординальное число. Тем самым каждому кардиналу (Кантор ввел для обозначения кардиналов «алефы» – первую букву еврейского алфавита с индексами) ℵα будет соответствовать бесконечно много ординалов:

0 1 2 ... ω0, ω0 + 1 ... ω1... ω2 ... ωn ... ωω0 ... Ω (ординалы)

0 1 2 ... ℵ0 ... ℵ1 ... ℵ2 ℵn …ℵ ω0 … τ («тау»-кардиналы)

Согласно теоремам теории множеств любой «отрезок» шкалы Ω ординальных чисел, сам как множество вполне упорядоченное, будет иметь больший ординал, чем все заключенные в этом отрезке. Отсюда вытекает, что невозможно рассматривать все Ω как множество, т.к. в противном случае Ω имело бы своим ординалом β, которое больше всех ординалов в Ω, но поскольку последнее содержит все ординалы, т.е. и β, то было бы: β > β (парадокс Бурали – Форти, 1897). Кантор стремился обойти этот парадокс введением (с 1880-х гг.) понятия консистентноcсти. Не любая множественность (Vielheit) есть множество (Menge). Множественность называется консистентной, или множеством, если ее можно рассматривать, как законченное целое. Если же допущение «совместного бытия» всех элементов множественности ведет к противоречию, то множественность оказывается неконсистентной, и ее, собственно, нельзя рассматривать в теории множеств. Такими неконсистентными множествами оказываются, в частности, Ω – множество всех ординальных чисел и τ («тау») – множество всех кардиналов («алефов»). Тем самым мы опять возвращаемся к бесконечности как к процессу. Как пишет математик 20 в. П.Вопенка: «Теория множеств, усилия которой были направлены на актуализацию потенциальной бесконечности, оказалась неспособной потенциальность устранить, а только смогла переместить ее в более высокую сферу» (Вопенка П. Математика в альтернативной теории множеств. – «Новое в зарубежной науке. Математика», 1983, № 31, с. 124.) Это не смущало, однако, самого Кантора. Он считал, что шкала «алефов» поднимается до бесконечности самого Бога и поэтому то, что последняя оказывается математически невыразимой, было для него само сабой разумеющимся: «Я никогда не исходил из какого-либо «Genus supremum» актуальной бесконечности. Совсем наоборот, я строго доказал абсолютное несуществование «Genus supremum» для актуальной бесконечности. То, что превосходит все бесконечное и трансфинитное, не есть «Genus»; это есть единственное, в высшей степени индивидуальное единство, в которое включено все, которое включает «Абсолютное», непостижимое для человеческого понимания. Это есть «Actus Purissimus», которое многими называется Богом» (Meschkowski H. Zwei unveroffentlichte Briefe Georg Cantors. – «Der Mathematilkuntemcht», 1971, № 4, S. 30–34).

Б. H. Катасонов

Новая философская энциклопедия. В четырех томах. / Ин-т философии РАН. Научно-ред. совет: В.С. Степин, А.А. Гусейнов, Г.Ю. Семигин. М., Мысль, 2010, т. I, А - Д, с. 249-250.

Происхождение и образование

В философии математики анализировал проблему бесконечности . Различая два вида математического бесконечного - несобственное (потенциальное) и собственное (актуальное, понимаемое как завершенное целое), - Георг Кантор настаивал на законности оперирования в математике понятием актуально бесконечного. Сторонник платонизма, он в математическом актуально бесконечном видел одну из форм актуально бесконечного вообще, обретающего высочайшую завершенность в абсолютном Божественном бытии. Некоторые христианские богословы, преимущественно представители неотомизма, увидели в трудах Кантора вызов уникальности абсолютной бесконечности природы Бога, приравняв однажды теорию трансфинитных чисел и пантеизм.

В вопросе существования в математике различал интрасубъективную (имманентную, то есть внутреннюю логическую непротиворечивость), и транссубъективную (транзистентную, то есть соответствие процессам внешнего мира), реальность математических объектов. В противовес Кронекеру, отвергавшему все не связанные с построением или вычислением способы введения новых математических объектов, Георг Кантор допускал конструирование любых логически непротиворечивых абстрактных математических систем.

Возражения философского плана идеям Кантора высказал Людвиг Витгенштейн .

Последние годы

В 1897 году научная деятельность Кантора прервалась из-за тяжёлой болезни. Периодически повторяющиеся с 1884 года и до конца его дней приступы депрессии некоторое время ставили в вину современникам Кантора, занявшим слишком агрессивную позицию, эти приступы, как считают, были проявлением биполярного расстройства и маниакально-депрессивного психоза.

Был женат на Валли Гутман, с которой имел шестеро детей, последний из которых родился в 1886 году . Несмотря на скромное академическое жалование, математик оказался в состоянии обеспечить семье безбедное проживание благодаря полученному от отца наследству.

Умер 6 января 1918 года в Галле (Заале).

Его именем был ударный кратер на обратной стороне Луны.

КА́НТОР Георг (Georg Ferdinand Ludwig Philipp Cantor ; 1845, Петербург, - 1918, Галле, Германия), немецкий математик и мыслитель.

С 1856 г. жил в Германии . Окончил гимназию в Берлине , изучал математику в университетах Цюриха, Геттингена и Берлина. В 1867–1913 гг. работал в университете в Галле: ассистент, с 1872 г. - экстраординарный, а с 1879 г. - ординарный профессор. Научная деятельность Кантора прервалась в 1897 г. из-за тяжелой болезни.

Кантор - создатель теории множеств и теории трансфинитных чисел. В 1874 г. он установил существование неэквивалентных, то есть имеющих разные мощности бесконечных множеств, в 1878 г. ввел общее понятие мощности множеств (в предложенном им и принятом в математике обозначении мощностей множеств буквами еврейского алфавита , возможно, сказалось его еврейское - по отцу - происхождение). В главном труде «О бесконечных линейных точечных образованиях» (1879–84) Кантор систематически изложил учение о множествах и завершил его построением примера совершенного множества (так называемое множество Кантора).

В начале 20 в. на основе теории множеств была построена вся математика и возник ряд новых научных дисциплин - топология, абстрактная алгебра, теория функций действительного переменного, функциональный анализ и другие.

Теория множеств открыла новую страницу также в исследованиях оснований математики - работы Кантора позволили впервые отчетливо сформулировать современные общие представления о предмете математики, строении математических теорий, роли аксиоматики и понятии изоморфизма систем объектов, заданных вместе со связывающими их отношениями. Важный толчок исследованиям логических оснований математики дали обнаруженные в теории множеств парадоксы, в частности, открытая Кантором проблема мощности множества всех множеств (которое неизбежно оказалось бы больше самого себя). Кантор развил также теорию действительных чисел, которая (наряду с теориями К. Вейерштрасса и Р. Дедекинда) кладется в основание построения математического анализа.

В философии математики Кантор анализировал проблему бесконечности. Различая два вида математического бесконечного - несобственное (потенциальное) и собственное (актуальное, понимаемое как завершенное целое), - Кантор, в отличие от предшественников, настаивал на законности оперирования в математике понятием актуально бесконечного. Сторонник платонизма, Кантор в математическом актуально бесконечном видел одну из форм актуально бесконечного вообще, обретающего высочайшую завершенность в абсолютном Божественном бытии.

В проблеме существования в математике Кантор различал интрасубъективную, или имманентную (то есть внутреннюю логическую непротиворечивость), и транссубъективную, или транзистентную (то есть соответствие процессам внешнего мира), реальность математических объектов. В противовес Л. Кронекеру , отвергавшему все не связанные с построением или вычислением способы введения новых математических объектов, Кантор допускал конструирование любых логически непротиворечивых абстрактных математических систем. Плодотворность этого подхода была подтверждена развитием математики в 20 в.

Признание пришло к Кантору лишь к концу творческого периода его жизни. В 1890 г. он был избран первым президентом Математического общества Германии.

В русском переводе ряд статей Кантора вошли в сборник «Новые идеи в математике», №6, СПб., 1914.