По картинам

Генетика сообщение по биологии. История зарождения генетики. Открытие «наследственных молекул»

Генетика

ГЕНЕ́ТИКА [нэ́], -и; ж. [от греч. genētikos - относящийся к рождению, происхождению]. Наука о законах наследственности и изменчивости организмов. Г. человека. Г. растений. Медицинская г. Космическая г.

гене́тика

(от греч. génesis - происхождение), наука о законах наследственности и изменчивости организмов и методах управления ими. В зависимости от объекта исследования различают генетику микроорганизмов, растений, животных и человека, а от уровня исследования - молекулярную генетику, цитогенетику и др. Основы современной генетики заложены Г. Менделем, открывшим законы дискретной наследственности (1865), и школой Т. Х. Моргана, обосновавшей хромосомную теорию наследственности (1910-е гг.). В СССР в 20-30-х гг. выдающийся вклад в генетику внесли работы Н. И. Вавилова, Н. К. Кольцова, С. С. Четверикова, А. С. Серебровского и др. С середины 30-х гг. и особенно после сессии ВАСХНИЛ 1948 в советской генетике возобладали антинаучные взгляды Т. Д. Лысенко (безосновательно названные им «мичуринским учением»), что до 1965 остановило её развитие и привело к уничтожению крупных генетических школ. Быстрое развитие генетики в этот период за рубежом, особенно молекулярной генетики во второй половине XX в., позволило раскрыть структуру генетического материала, понять механизм его работы. Идеи и методы генетики используются для решения проблем медицины, сельского хозяйства, микробиологической промышленности. Её достижения привели к развитию генетической инженерии и биотехнологии.

ГЕНЕТИКА

ГЕНЕ́ТИКА (от греч. genesis - происхождение), наука о законах наследственности и изменчивости организмов и методах управления ими. В зависимости от объекта исследования различают генетику микроорганизмов, растений, животных и человека, а от уровня исследования - молекулярную генетику, цитогенетику и др. Основы современной генетики заложены Г. Менделем (см. МЕНДЕЛЬ Грегор Иоганн) , открывшим законы дискретной наследственности (1865), и школой Т. Х. Моргана, обосновавшей хромосомную теорию наследственности (1910-е гг.). В СССР в 1920-1930-х годах выдающийся вклад в генетику внесли работы Н. И. Вавилова (см. ВАВИЛОВ Николай Иванович) , Н. К. Кольцова, С. С. Четверикова, А. С. Серебровского и др. С сер. 1930-х годов, и особенно после сессии ВАСХНИЛ 1948, в советской генетике возобладали антинаучные взгляды Т. Д. Лысенко (безосновательно названные им «мичуринским учением»), что до 1965 остановило ее развитие и привело к уничтожению крупных генетических школ. Быстрое развитие генетики в этот период за рубежом, особенно молекулярной генетики во 2-й пол. 20 в., позволило раскрыть структуру генетического материала, понять механизм его работы. Идеи и методы генетики используются для решения проблем медицины, сельского хозяйства, микробиологической промышленности. Ее достижения привели к развитию генетической инженерии (см. ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ) и биотехнологии (см. БИОТЕХНОЛОГИЯ) .
* * *
ГЕНЕ́ТИКА (от греч. genesis - происхождение), наука, изучающая закономерности наследственности и изменчивости организмов.
Основные этапы истории генетики
Различные умозрительные представления о наследственности и изменчивости высказывались еще античными философами и врачами. В большинстве своем эти представления были ошибочными, но иногда среди них появлялись и гениальные догадки. Так, римский философ и поэт Лукреций Кар (см. ЛУКРЕЦИЙ) писал в своей знаменитой поэме «О природе вещей» о «первоначалах» (наследственных задатках), определяющих передачу из поколения в поколение признаков от предков к потомкам, о происходящем при этом случайном комбинировании («жеребьевке») этих признаков, отрицал возможность изменения наследственных признаков под влиянием внешних условий. Однако подлинно научное познание наследственности и изменчивости началось лишь спустя много столетий, когда было накоплено множество точных сведений о наследовании различных признаков у растений, животных и человека. Число таких наблюдений, проведенных преимущественно практиками-растениеводами и животноводами, особенно возросло в период с середины 18 до середины 19 века. Наиболее ценные данные были получены И. Кельрейтером и А. Гертнером (Германия), О. Сажрэ и Ш. Ноденом (Франция), Т. Найтом (Англия). На основании межвидовых и внутривидовых скрещиваний растений они обнаружили ряд важных факторов, касающихся усиления разнообразия признаков в потомстве гибридов, преобладания у потомков признаков одного из родителей и т. п. Сходные обобщения сделал во Франции П. Люка (1847-1850), собравший обширные сведения о наследовании различных признаков у человека. Тем не менее, четких представлений о закономерностях наследования и наследственности вплоть до конца 19 века не было за одним существенным исключением. Этим исключением была замечательная работа Г. Менделя (см. МЕНДЕЛЬ Грегор Иоганн) , установившего в опытах по гибридизации сортов гороха важнейший законы наследования признаков, которые впоследствии легли в основу генетики. Однако работа Г. Менделя [доложена им в 1865 на заседании общества естествоиспытателей г. Брюнн (Брно) и напечатана на следующий год в трудах этого общества] не была оценена современниками и, оставаясь забытой 35 лет, не повлияла на распространенные в 19 веке представления о наследственности и изменчивости. Появление эволюционных теорий Ж. Б. Ламарка (см. ЛАМАРК Жан Батист) , а затем Ч. Дарвина усилило во второй половине 19 века интерес к проблемам изменчивости и наследственности, т. к. эволюция возможна только на основе возникновения у живых существ изменений и их сохранения у потомков. Это побудило видных биологов того времени выдвинуть несколько гипотез о механизме наследственности, гораздо более детализированных, чем предлагавшиеся ранее. Хотя эти гипотезы были в значительной степени умозрительными и в дальнейшем были опровергнуты экспериментальными исследованиями, три из них наряду с ошибочными содержали также подтвердившиеся положения. Первая принадлежала Ч. Дарвину, назвавшему ее «временной гипотезой пангенезиса» (см. Пангенезис (см. ПАНГЕНЕЗИС) ). В этой гипотезе была правильная догадка о том, что половые клетки содержат особые частицы, определяющие развитие признаков потомков. Во второй гипотезе, выдвинутой немецким ботаником К. Негели, содержалась верная мысль о том, что каждая клетка организма содержит особое вещество («идиоплазму»), определяющее наследственные свойства организма. Наиболее детализированной была третья гипотеза, предложенная немецким зоологом А. Вейсманом (см. ВЕЙСМАН Август) . Он тоже считал, что в половых клетках есть особое вещество - носитель наследственности («зародышевая плазма»). Опираясь на сведения о механизме деления клетки, Вейсман отождествлял это вещество с хромосомами. Предположение о ведущей роли хромосом в передаче наследственных свойств было правильным и Вейсмана справедливо считают предтечей хромосомной теории наследственности (см. ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ) . Верными были также его утверждения о большом значении скрещиваний, как причины изменчивости, и отрицание наследования приобретенных признаков.
Датой рождения генетики принято считать 1900, когда три ботаника - Г. де Фриз (см. ДЕ ФРИЗ Хуго) (Голландия), К. Корренс (см. КОРРЕНС Карл Эрих) (Германия) и Э. Чермак (см. ЧЕРМАК-ЗЕЙЗЕНЕГГ) (Австрия), проводившие опыты по гибридизации растений, натолкнулись независимо друг от друга на забытую работу Г. Менделя. Они были поражены сходством его результатов с полученными ими, оценили глубину, точность и значение сделанных им выводов и опубликовали свои данные, показав, что полностью подтверждают заключения Менделя. Дальнейшее развитие генетики связано с рядом этапов, каждый из которых характеризовался преобладающими в то время направлениями исследований. Границы между этими этапами в значительной мере условны - этапы тесно связаны друг с другом, и переход от одного этапа к другому становился возможным благодаря открытиям, сделанным в предыдущем. Наряду с разработкой наиболее характерных для каждого этапа новых направлений, продолжалось исследование тех проблем, которые были главными ранее, а затем в той или иной мере отодвинулись на второй план. С этой оговоркой можно разделить историю генетики на шесть основных этапов.
Первый этап (с 1900 приблизительно по 1912), получивший название менделизма (см. МЕНДЕЛИЗМ) , является периодом утверждения открытых Менделем законов наследования на основе гибридологических опытов, проведенных в разных странах на высших растениях и животных (лабораторные грызуны, куры, бабочки и др.), в результате чего выяснилось, что эти законы имеют универсальный характер. Название «генетика» развивающейся науке дал в 1906 английский ученый У. Бэтсон, а вскоре сложились и такие важные генетические понятия, как ген (см. ГЕН (наследственный фактор)) , генотип (см. ГЕНОТИП) , фенотип (см. ФЕНОТИП) , которые были предложены в 1909 датским генетиком В. Иогансеном (см. ИОГАНСЕН Вильгельм Людвиг) . Наряду с наиболее характерными для этого начального этапа истории генетики работами, подтверждающими на разных объектах справедливость законов Менделя, в те же годы зародились и некоторые новые направления исследований, получивших свое развитие в последующие периоды. Во-первых, это синтез сведений о хромосомах, митозе и мейозе с данными генетики. Уже в 1902 Т. Бовери (Германия) и У. Сеттон (США) обратили внимание на полный параллелизм расхождения хромосом и их перекомбинирования при мейозе и оплодотворении с расщеплением и перекомбинированием наследственных признаков по законам Менделя, что послужило важной предпосылкой возникновения хромосомной теории наследственности.
Во-вторых, выяснилось, что, хотя большинство изученных к тому времени наследственных признаков самых разных организмов передавалось из поколения в поколение в полном соответствии с законами Менделя, были и исключения. Так, английские генетики У. Бэтсон и Р. Пеннет в 1906 в опытах с душистым горошком обнаружили явление сцепленного наследования некоторых признаков, а другой английский генетик Л. Донкастер в том же году в опытах с крыжовниковой пяденицей открыл сцепленное с полом наследование. И в том и в другом случае наследование признаков происходило иначе, чем предсказывали законы Менделя. Число примеров обоих типов отклонения от менделевского наследования стало затем быстро увеличиваться, но только на следующем этапе истории генетики выяснилось, что принципиального противоречия с менделизмом в этих случаях нет и что это кажущееся противоречие объяснимо в рамках хромосомной теории наследственности. В-третьих, началось изучение внезапно возникающих и стойко наследуемых изменений - мутаций. В этом особенно большие заслуги принадлежали Г. де Фризу (1901, 1903), а в России С. Н. Коржинскому (1892). На первом этапе развития генетики появились также первые попытки рассмотреть в свете ее данных проблемы эволюционного учения. Три такие попытки, предпринятые У. Бэтсоном (Англия), Г. де Фризом и Я. Лотси (Голландия), отражали стремление авторов использовать основы генетики для ревизии положений дарвинизма. На несостоятельность этих попыток уже тогда указал в ряде критических статей К. А. Тимирязев, который одним из первых отметил, что менделизм не только не противоречит дарвинизму, но, наоборот, подкрепляет его, снимая некоторые важные возражения, выдвигавшиеся против теории Дарвина.
Отличительной чертой второго этапа развития генетики (приблизительно 1912-1925) было создание и утверждение хромосомной теории наследственности. Ведущую роль в этом сыграли экспериментальные работы американского генетика Т. Моргана и его учеников (А. Стертевант, К. Бриджес и Г. Меллер), проведенные в период с 1909 по 1919 на дрозофиле. Эти работы, подтвержденные затем в др. лабораториях и на др. организмах, показали, что гены лежат в хромосомах клеточного ядра и что передача наследственных признаков, в т. ч. и таких, наследование которых, на первый взгляд, не укладывается в законы Менделя, определяется поведением хромосом при созревании половых клеток и оплодотворении. Данный вывод вытекал из исследований, проводившихся двумя независимыми методами - гибридологическим и цитологическим, дававшими взаимно подтверждающие результаты. Генетические работы школы Моргана показали возможность строить карты хромосом с указанием точного расположения различных генов (см. Генетические карты (см. ГЕНЕТИЧЕСКИЕ КАРТЫ ХРОМОСОМ) ). На основе хромосомной теории наследственности был выяснен и доказан хромосомный механизм определения пола. Большие заслуги в этом принадлежали, кроме Моргана, американскому цитологу Э. Вильсону. Тогда же начались и другие работы по генетике пола, среди которых особое значение имели исследования немецкого генетика Р. Гольдшмидта. Хромосомная теория наследственности была крупнейшим достижением этого этапа развития генетики и во многом определила путь дальнейших генетических исследований.
Если в первые годы развития менделизма было распространено упрощенное представление, что каждый наследственный признак организма определяется особым геном, то в рассматриваемый период стало ясно, что любой такой признак определяется взаимодействием мн. генов (эпистаз (см. ЭПИСТАЗ) , полимерия (см. ПОЛИМЕРИЯ) и др.), а каждый ген в той или иной мере влияет на разные признаки (плейотропия (см. ПЛЕЙОТРОПИЯ) ). Кроме того, оказалось, что способность гена проявляться в фенотипе организма (пенетрантность (см. ПЕНЕТРАНТНОСТЬ) ) и степень его действия на фенотип (экспрессивность (см. ЭКСПРЕССИВНОСТЬ) ) могут зависеть, иногда в большой степени, от влияния окружающей среды или действия др. генов. Представления о пенетрантности и экспрессивности генов были впервые сформулированы в 1925 Н. В. Тимофеевым-Ресовским (см. ТИМОФЕЕВ-РЕСОВСКИЙ Николай Владимирович) на основании результатов его опытов с дрозофилой.
В этот же период быстро развиваются некоторые направления генетики, важные для разработки генетических основ селекции, семеноводства и племенного дела: изучение закономерностей наследования количественных признаков (особенно важны исследования шведского генетика Г. Нильсона-Эле), выяснение природы гетерозиса (см. ГЕТЕРОЗИС) (работы американских генетиков Э. Иста и Д. Джонса), исследования сравнительной генетики культурных растений (выдающиеся труды Н. И. Вавилова, которые легли в основу его закона гомологичных рядов в наследственной изменчивости), по межвидовой гибридизации плодовых растений (работы И. В. Мичурина в СССР, Л. Бербанка в США), по частной генетике возделываемых растений и домашних животных.
К рассматриваемому периоду относится и становление генетики в СССР, причем ее быстрое развитие началось в 1920-х годах, когда сложились три генетических школы, возглавляемые Н. К. Кольцовым в Москве, Ю. А. Филипченко и Н. И. Вавиловым в Ленинграде.
Следующий этап (приблизительно 1925-1940) связан с открытием искусственного мутагенеза. До 1925 довольно широко было распространено мнение, восходившее к высказыванием Вейсмана и особенно к взглядам де Фриза, о том, что мутации возникают в организме самопроизвольно под влиянием каких-то чисто внутренних причин и не зависят от внешних воздействий. Эта ошибочная концепция была опровергнута в 1925 работами Г. А. Надсона и Г. С. Филиппова по искусственному вызыванию мутаций, а затем экспериментально доказана опытами Г. Меллера (1927) по воздействию рентгеновских лучей на дрозофилу. Работа Г. Меллера стимулировала многочисленные исследования по мутагенезу на разных объектах, которые показали, что ионизирующие излучения - универсальные мутагены. Благодаря этому началось изучение закономерностей мутагенного действия излучений; особенно ценными были исследования Н. В. Тимофеева-Ресовского и М. Дельбрюка, обнаруживших прямую зависимость частоты индуцированных мутаций от дозы радиации и предположивших в 1935, что эти мутации вызываются непосредственным попаданием в ген кванта или ионизирующей частицы (теория мишени). В дальнейшем показано, что мутагенным действием обладают ультрафиолетовые лучи, химические вещества. Первые химические мутагены были открыты в 1930-х годах в СССР В. В. Сахаровым, М. Е. Лобашевым и С. М. Гершензоном. Благодаря исследованиям И. А. Раппопорта в СССР и Ш. Ауэрбах и Дж. Робсона в Великобритании, в 1946 обнаружены супермутагены этиленимин и азотистый иприт.
Исследования в этой области привели к быстрому прогрессу в познании закономерностей мутационного процесса и к выяснению некоторых вопросов, касающихся тонкого строения гена. В конце 1920-х - начале 1930-х годов А. С. Серебровский и его ученики получили первые данные, указывающие на сложное строение гена из частей, способных мутировать порознь или вместе. Возможность индукции мутаций открыла новые перспективы практического использования достижений генетики. В разных странах начались работы по применению радиационного мутагенеза для получения исходного материала при создании новых форм культурных растений. В СССР инициаторами такой «радиационной селекции» были А. А. Сапегин и Л. Н. Делоне.
На этом же этапе развития генетики возникло направление, изучающее роль генетических процессов в эволюции. Основополагающими в этой отрасли знаний были теоретические работы английских генетиков Р. Фишера и Дж. Холдейна, американского генетика С. Райта и экспериментальные исследования С. С. Четверикова и его сотрудников, впервые исследовавших на нескольких видах дрозофил генетическую структуру природных популяций. В отличие от некоторых ранних менделистов, выступавших против дарвинизма, эти ученые, опираясь на большой фактический материал, накопленный с тех пор генетикой, убедительно показали, что генетические данные подтверждают и конкретизируют ряд основных принципов дарвинизма, способствуют выяснению соотносительного значения в эволюции естественного отбора, разных типов изменчивости, изоляции и т. д. Н. И. Вавиловым и его учениками продолжалось успешное изучение сравнительной генетики и эволюции возделываемых растений. Особенно яркой была работа его талантливого сотрудника Г. Д. Карпеченко, который на основе межродовой гибридизации получил плодовитый редечно-капустный гибрид. Он экспериментально доказал возможность преодоления бесплодия у отдаленных гибридов и воспроизвел один из способов образования новых видов у растений.
Большого расцвета в этот период достигла генетика в СССР. Помимо выдающихся работ, указанных выше, в разных областях генетики были получены важные результаты, признанные генетиками всего мира. Среди них работы Б. Л. Астаурова, который в опытах на тутовом шелкопряде разработанными им генетическими методами впервые доказал возможность регулировать частоту особей определенного пола у потомства, М. М. Завадовского по развитию половых признаков у позвоночных, Г. А. Левитского по классификации и изменчивости кариотипов и их эволюции. Широко известны в этот период исследования А. А. Сапегина, К. К. Мейстера, А. Р. Жебрака по частной генетике и генетическим основам селекции растений, работы А. С. Серебровского, С. Г. Давыдова, Д. А. Кисловского по частной генетике и генетическим основам селекции домашних животных. Н. К. Кольцов (см. КОЛЬЦОВ Николай Константинович) выдвинул в 1927 концепцию о том, что хромосома с генами представляет одну гигантскую органическую молекулу и что воспроизведение этой наследственной молекулы осуществляется матричным путем. То и другое было позже подтверждено, когда генетические процессы начали изучать на молекулярном уровне (правда оказалось, что генетическим материалом служит не белок, как считал Кольцов, а ДНК).
В конце 1920-х годов в СССР происходила оживленная дискуссия о том, могут ли наследоваться модификации (их тогда называли «приобретенными признаками»), т. е. фенотипические изменения, вызванные в теле организма воздействием внешних условий (пищей, температурой, влажностью, освещением и т. п.) и упражнением либо неупражнением органов. Представление о возможности наследования модификаций было в ту пору практически полностью отвергнуто в зарубежной генетике на основании многочисленных опытных данных, но в СССР некоторые биологи, особенно Е. С. Смирнов, Е. М. Вермель и А. М. Кузин, эту возможность разделяли и пропагандировали. Их поддерживали московские философы М. Б. Митин, П. Ф. Юдин и др., утверждавшие, что эта неоламаркистская концепция якобы соответствует философии диалектического материализма. Спор этот продолжался несколько лет, хотя ошибочность теории наследования модификаций была убедительно продемонстрирована и сов. генетиками Н. К. Кольцовым, Ю. А. Филипченко, А. С. Серебровским, С. С. Четвериковым и зоологами А. С. Северцовым и И. И. Шмальгаузеном. Последний позже выдвинул важные соображения о том, что размах и характер модификаций, хотя они и не наследуются, зависят не только от внешних воздействий, но и от «нормы реакции» организма, определяемой его генотипом. Ошибочной идее наследования приобретенных признаков суждено было впоследствии возродиться в антинаучных воззрениях Т. Д. Лысенко.
Наиболее характерными чертами четвертого этапа истории генетики (приблизительно 1940-1955) было бурное развитие работ по генетике физиологических и биохимических признаков, обусловленное вовлечением в круг генетических опытов новых для генетики объектов - микроорганизмов и вирусов. Возможность получения у этих объектов огромного по численности потомства за короткое время резко повысила разрешающую способность генетического анализа и позволила исследовать многие ранее недоступные стороны генетических явлений.
Изучение биохимических процессов, лежащих в основе формирования наследственных признаков разных организмов, в т. ч. дрозофилы и особенно плесени нейроспоры, пролило свет на то, как действуют гены и, в частности, как влияют генные мутации на синтезируемые в организме ферменты. Это привело к обобщению, сделанному в 1940-х годах американскими генетиками Дж. Бидлом и Э. Тейтемом, согласно которому всякий ген определяет синтез одного фермента (формула «один ген - один фермент» была впоследствии уточнена «один ген - один белок» или даже «один ген - один полипептид»).
В конце 30-х и начале 40-х годов работами американских генетиков М. Грина и Э. Льюиса в опытах на дрозофиле было четко доказано сложное строение и дробимость гена, т. е. подтверждены и углублены аналогичные данные, полученные А. С. Серебровским (см. СЕРЕБРОВСКИЙ Александр Сергеевич) .
В 1944 американский генетик О. Эйвери с сотрудниками в работе по выяснению природы генетической трансформации у бактерий показала, что носителем наследственных потенций (генетической информации) организма служит дезоксирибонуклеиновая кислота (ДНК) хромосом. Это открытие послужило мощным толчком к изучению тонкого химического строения, путей биосинтеза и биологических функций нуклеиновых кислот и явилось отправной точкой, с которой началось развитие молекулярной генетики и всей молекулярной биологии. Наиболее важными достижениями конца четвертого периода является установление того факта, что инфекционным элементом вирусов служит их нуклеиновая кислота (ДНК или РНК), а также открытие в 1952 американскими генетиками Дж. Ледербергом и М. Зиндером трансдукции (см. ТРАНСДУКЦИЯ) , т. е. переноса вирусами генов хозяина, и выяснение структуры молекул ДНК (т. н. двойной спирали) английским физиком Ф. Криком и американским генетиком Дж. Уотсоном в 1953. Последняя работа сыграла выдающуюся роль во всем последующем развитии генетики и всей биологии.
Благодаря прогрессу биохимической генетики большие успехи были достигнуты в генетических и цитологических исследованиях наследственных болезней (см. НАСЛЕДСТВЕННЫЕ БОЛЕЗНИ) человека. В результате сложилось новое направление - медицинская генетика.
Дальнейшее развитие получили работы по генетике природных популяций. Особенно интенсивно они проводились в СССР Н. П. Дубининым с сотрудниками и С. М. Гершензоном с сотрудниками, а в США Ф. Г. Добржанским. В ходе этих исследований показаны роль различных типов мутаций в эволюции, действие естественного отбора, изоляции и генетического дрейфа на генетическую структуру природных популяций. Открытие ряда сильных химических мутагенов послужило толчком к быстрому прогрессу химического мутагенеза. В эти же годы появились первые высокопродуктивные сорта культурных растений, созданные на основе мутаций, искусственно вызванных радиацией, началось применение с той же целью химических мутагенов; были внедрены в практику методы использования гетерозиса, особенно у кукурузы и тутового шелкопряда.
До 1940-х годов генетические исследования в СССР развивались в целом успешно и занимали одно из ведущих мест в мире. С установлением в сов. биологии полновластного господства Т. Д. Лысенко и его сподвижников, быстрое выдвижение которого началось в середине 1930-х годов и достигло апогея в 1948, генетика в СССР была фактически разгромлена.
Пятый этап истории генетики (приблизительно с середины 1950-х годов до начала 1970-х годов) характеризуется исследованием генетических явлений преимущественно на молекулярном уровне, что стало возможным благодаря быстрому внедрению в генетику, как и в др. области биологии, новых химических, физических и математических методов.
Было установлено, что гены представляют собой участки гигантских полимерных молекул ДНК и различаются числом и порядком чередования составляющих их пар нуклеотидов. Совместными усилиями генетиков, физиков и химиков было выяснено, что наследственная информация, передаваемая от родителей потомкам, закодирована последовательностью нуклеотидных пар в генах. С помощью ферментов она переписывается (транскрипция) в нуклеотидную последовательность однонитевых молекул матричных (информационных) РНК, определяющих аминокислотную последовательность синтезируемых белках (трансляция), обуславливающих основные свойства организма (у РНК-содержащих вирусов генетическая информация закодирована в нуклеотидной последовательности их РНК). В расшифровке генетического кода (см. КОД ГЕНЕТИЧЕСКИЙ) , оказавшегося универсальным для всех живых существ, главные заслуги принадлежат Ф. Крику, С. Бреннеру (Великобритания), С. Очоа и М. Ниренбергу (США).
В эти же годы благодаря открытию ряда ферментов (рестриктаз), разрезающих нить ДНК в определенных точках на мелкие фрагменты, научились выделять гены из ДНК хромосом. В 1969 в США Х. Г. Корана с сотрудниками осуществил химический синтез гена.
В 1961 французские генетики Ф. Жакоб и Ж. Моно открыли регуляторные механизмы включения и выключения работы некоторых генов белкового синтеза у кишечной палочки и разработали на основе этих данных концепцию оперона (см. ОПЕРОН) , которая позже была подтверждена и на др. организмах.
В результате выяснения молекулярных механизмов мутаций были достигнуты большие успехи в изыскании и изучении действия новых мощных химических мутагенов («супермутагенов») и в использовании их в селективной практике. Значительно продвинулись работы и во мн. других областях генетики - в разработке методов защиты генома человека от воздействия физических и химических мутагенов окружающей среды, в раскрытии молекулярно-генетических механизмов регуляции индивидуального развития организмов, в исследовании ранее малоизученных явлений внеядерной наследственности, осуществляемой через пластиды, митохондрии, плазмиды. К концу этого периода относится широкое возрождение генетических исследований в СССР (начиная с 1965).
На современном этапе истории генетики, начавшемся в начале 1970-х годов, наряду с прогрессом почти всех ранее сложившихся направлений, особенно интенсивно развивалась молекулярная генетика, что привело к фундаментальным открытиям и, как следствие, к возникновению и успешной разработке принципиально новых форм прикладной генетики.
Так, еще в 1960-х годах в СССР С. М. Гершензон с сотрудниками, изучавшими репродукцию одного из вирусов насекомых, получили новые данные в пользу того, что генетическая информация может передаваться от РНК к ДНК (обратная транскрипция), а не только от ДНК к РНК, что ранее считалось единственным путем транскрипции. В 1970 американские генетики Г. Темин и Д. Балтимор в опытах с некоторыми РНК-содержащими опухолеродными вирусами животных доказали существование обратной транскрипции, выявили ее молекулярный механизм и выделили осуществляющий ее фермент - обратную транскриптазу (ревертазу (см. РЕВЕРТАЗА) ), кодируемую вирусным геном. Открытие обратной транскрипции позволило искусственно синтезировать многие физиологически активные гены на основе их матричной РНК и создавать банки генов (см. БАНК ГЕНОВ) , как искусственно синтезированных, так и естественных. Большинство этих генов уже секвенированы, т. е. в них определена последовательность нуклеотидных пар. Полученные при секвенировании данные привели к открытию интрон-экзонной структуры большинства генов эукариот.
Выяснение того, что репродукция РНК-содержащих онкогенных вирусов происходит с использованием обратной транскрипции (такие вирусы стали называть ретровирусами (см. РЕТРОВИРУСЫ) ), сыграло важную роль в создании современной молекулярно-генетической концепции онкогенеза (см. ОНКОГЕНЕЗ) - возникновения злокачественных опухолей. Вирусогенетическая природа возникновения опухолей была выдвинута еще в сер. 1940-х годов советским вирусологом Л. А. Зильбером, работавшим с ДНК-содержавшим онкогенным вирусом. Однако ее признанию в те годы помешало то, что она не могла объяснить, как РНК-содержащие вирусы вызывают злокачественные опухоли. После открытия обратной транскрипции стало ясно, что вирусогенетическая теория применима к ретровирусам в такой же мере, как и к ДНК-содержащим онкогенным вирусам. В дальнейшем вирусогенетическая теория злокачественного роста стала развиваться гл. обр. на основе гипотезы онкогенов (см. ОНКОГЕНЫ) , впервые выдвинутой американскими учеными Р. Хюбнером и Дж. Тодаро и подтвержденной затем многочисленными экспериментальными исследованиями.
Фундаментальное значение для развития генетики имело также открытие и исследование мобильных генетических элементов (см. МОБИЛЬНЫЕ ГЕНЕТИЧЕСКИЕ ЭЛЕМЕНТЫ) , впервые предсказанных Б. Мак-Клинток (см. МАК-КЛИНТОК Барбара) еще в конце 1940-х годов на основе генетических экспериментов на кукурузе. Эти данные не были должным образом оценены до тех пор, пока в конце 1960-х годов широко развернувшиеся работы по генетике бактерий не привели к открытию у них двух классов мобильных генетических элементов. Десятилетие спустя Д. Хогнесс с сотрудниками (США) и независимо от них Г. П. Георгиев с сотрудниками (СССР) выявили мобильные генетические элементы, получившие название мобильных диспергированных генов (МДГ) у дрозофилы. Вскоре было установлено, что подвижные генетические элементы имеются и у других эукариот.
Некоторые мобильные генетические элементы способны захватывать близлежащие гены и переносить их в др. места генома. Такая способность мобильного Р-элемента дрозофилы была использована американскими генетиками Г. Рубиным и А. Спрэдлингом для разработки техники переноса любого выделенного с помощью рестриктаз гена или его части в несвойственное ему место хромосом. Этот метод стал широко применяться для изучения роли регуляторных генов в работе структурных генов, для конструирования мозаичных генов и т. д.
Молекулярно-генетический подход углубил понимание механизма синтеза антител (иммуноглобулинов (см. ИММУНОГЛОБУЛИНЫ) ). Выявление структурных генов, кодирующих константные и вариабельные цепи молекул иммуноглобулинов, и регуляторных генов, обеспечивающих согласованное действие этих структурных генов, позволило объяснить, как обеспечивается возможность синтеза огромного числа различных иммуноглобулинов на основе ограниченного набора соответствующих генов.
Уже на начальных этапах развития генетики сложилось представление о двух основных типах изменчивости: наследственной, или генотипической, изменчивости, обусловленной генными и хромосомными мутациями и рекомбинацией генов, и ненаследственной, или модификационной, обусловленной воздействиями на признаки развивающегося организма различных факторов окружающей среды. В соответствии с этим было принято рассматривать фенотип организма как результат взаимодействия генотипа и факторов окружающей среды. Однако, эта концепция потребовала существенного дополнения. Еще в 1928 Б. Л. Астауров на основании изучения изменчивости некоторых мутантных признаков дрозофилы высказал мысль, что одной из причин изменчивости могут быть случайные отклонения в ходе развития тех или иных признаков (органов). В 1980-е годы эта мысль получила дополнительные подтверждения. Опытами Г. Стента (США) и В. А. Струнникова (СССР), проведенными на разных животных (нематодах, пиявках, дрозофиле, тутовом шелкопряде), было показано, что выраженная изменчивость структурных и физиологических признаков наблюдается даже среди генетически идентичных (изогенных) особей, воспитываемых в идеально однородных условиях среды. Эта изменчивость, очевидно, обусловлена случайными отклонениями в протекании различных внутриклеточных и межклеточных онтогенетических процессов, т. е. тем, что можно охарактеризовать, как «онтогенетический шум». В связи с этим В. А. Струнников развил представление о «реализационной изменчивости», которая участвует в формировании фенотипа наряду с генотипической и модификационной (подробнее см. Изменчивость (см. ИЗМЕНЧИВОСТЬ) ).
Успехи молекулярной генетики создали предпосылки для возникновения четырех новых направлений генетических исследований преимущественно прикладного характера, основная цель которых изменять геном организма в желаемую сторону. Наиболее быстро из этих направлений развивались генетическая инженерия (см. ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ) и генетика соматических клетоڮ Генетическая инженерия подразделяется на генную (искусственный перенос отдельных генов) и хромосомную (искусственный перенос хромосом и их фрагментов). Методы генной инженерии, развитие которых началось в 1972 в США в лаборатории П. Берга, широко используются для промышленного производства высококачественных биопрепаратов, используемых в медицине (инсулин человека, интерферон, вакцины против гепатитов В, для диагностики СПИД и т. д.). С их помощью получены разнообразные трансгенные животные (см. ТРАНСГЕННЫЕ ЖИВОТНЫЕ) . Получены растения картофеля и подсолнечника, обогащенные запасным белком, кодируемым геном бобовых, растения подсолнечника, обогащенные белком, кодируемым геном кукурузы. Очень перспективны работы, ведущиеся во многих лабораториях мира, по переносу генов азотфиксации из почвенных бактерий в сельскохозяйственные растения. Делаются попытки излечения наследственных заболеваний путем введения в организм пациента «здорового» гена для замещения им мутантного, являющегося причиной болезни. Достижения в технологии рекомбинантных ДНК, сделавшие возможным выделение многих генов др. организмов, а также расширение знаний о регуляции их экспрессии позволяют надеяться на реализацию этой, казавшейся прежде фантастической, идеи.
Метод хромосомной инженерии позволяет пересадить в яйцеклетку млекопитающего с удаленным ядром диплоидное ядро соматической клетки и ввести такую яйцеклетку в матку самки, гормонально подготовленную к имплантации. В этом случае родится потомок, генетически идентичный особи, от которой взята соматическая клетка. Таких потомков можно получить от этой особи неограниченное число, т. е. генетически клонировать ее (см. Клонирование животных (см. КЛОНИРОВАНИЕ ЖИВОТНЫХ) ).
Практическое значение имеют исследования, проводимые на соматических клетках растений, животных и человека. Селекцией клеток растений - продуцентов лекарственных алкалоидов (руты душистой, раувольфии), в сочетании с мутагенезом содержание этих алкалоидов в клеточной массе повышено в 10-20 раз. Селекцией клеток на питательных средах и последующей регенерацией целых растений из клеточного каллуса выведены сорта ряда возделываемых растений, устойчивые к различным гербицидам и засолению почвы. Гибридизацией соматических клеток разных видов и родов растений, половая гибридизация которых невозможна или очень затруднена, и последующей регенерацией из клеточного каллуса созданы разные гибридные формы (капуста - турнепс, культурный картофель - дикие его виды и т. п.).
Другое важное достижение генетики соматических клеток животных - создание гибридом (см. ГИБРИДОМА) , на основе которых получают моноклональные антитела, служащие для создания высокоспецифических вакцин, а также для выделения необходимого фермента из смеси ферментов.
Весьма перспективны для практики еще два молекулярно-генетических направления - сайт-специфичный мутагенез и создание антисмысловых РНК. Сайт-специфичный мутагенез (индукция мутаций определенного выделенного рестриктазами гена или его комплементарной ДНК, и затем включение мутировавшего гена в геном для замены им его немутантного аллеля) впервые позволил индуцировать желательные, а не случайные генные мутации, и уже успешно применяется для получения направленных генных мутаций у бактерий и дрожжей.
Антисмысловые РНК, возможность получения которых впервые была показана в 1981 работающим в США японским иммунологом Д. Томизавой, могут использоваться для целенаправленного регулирования уровня синтеза определенных белков, а также для направленного ингибирования онкогенов и вирусных геномов. Исследования, проведенные по этим новым генетическим направлениям, были нацелены преимущественно на решение прикладных задач. Вместе с тем они внесли фундаментальный вклад в представления об организации генома, структуре и функциях генов, взаимоотношениях генов ядра и клеточных органелл и др.
Основные задачи генетики
Генетические исследования преследуют цели двоякого рода: познание закономерностей наследственности и изменчивости и изыскание путей практического использования этих закономерностей. То и другое тесно связано: решение практических задач основывается на заключениях, полученных при изучении фундаментальных генетических проблем и в то же время доставляет фактические данные, важные для расширения и углубления теоретических представлений.
От поколения к поколению передается (хотя иногда и в несколько искаженном виде) информация о всех многообразных морфологических, физиологических и биохимических признаках, которые должны реализоваться у потомков. Исходя из такого кибернетического характера генетических процессов, удобно сформулировать четыре основные теоретические проблемы, исследуемые генетикой:
Во-первых, проблема хранения генетической информации. Изучается, в каких материальных структурах клетки заключена генетическая информация и как она там закодирована (см. Генетический код (см. КОД ГЕНЕТИЧЕСКИЙ) ).
Во-вторых, проблема передачи генетической информации. Изучаются механизмы и закономерности передачи генетической информации от клетки к клетке и от поколения к поколению.
В-третьих, проблема реализации генетической информации. Изучается, как генетическая информация воплощается в конкретных признаках развивающегося организма, взаимодействуя при этом с влияниями окружающей среды, в той или иной мере изменяющей эти признаки, подчас значительно.
В-четвертых, проблема изменения генетической информации. Изучаются типы, причины и механизмы этих изменений.
Заключения, полученные при изучении фундаментальных проблем наследственности и изменчивости, служат основой решения стоящих перед генетикой прикладных задач.
Достижения генетики используются для выбора типов скрещиваний, наилучшим образом влияющих на генотипическую структуру (расщепление) у потомков, для выбора наиболее эффективных способов отбора, для регуляции развития наследственных признаков, управления мутационным процессом, направленного изменения генома организма с помощью генетической инженерии и сайт-специфичного мутагенеза. Знание того, как разные способы отбора влияют на генотипическую структуру исходной популяции (породу, сорт), позволяет использовать те приемы отбора, которые наиболее быстро изменят эту структуру в желаемую сторону. Понимание путей реализации генетической информации в ходе онтогенеза и влияния, оказываемого на эти процессы окружающей средой, помогают подбирать условия, способствующие наиболее полному проявлению у данного организма ценных признаков и «подавлению» нежелательных. Это имеет важное значение для повышения продуктивности домашних животных, культурных растений и промышленных микроорганизмов, а также для медицины, так как позволяет предупреждать проявление ряда наследственных болезней человека.
Исследование физических и химических мутагенов и механизма их действия делает возможным искусственно получать множество наследственно измененных форм, что способствует созданию улучшенных штаммов полезных микроорганизмов и сортов культурных растений. Познание закономерностей мутационного процесса необходимо для разработки мер по защите генома человека и животных от повреждений физическими (гл. обр. радиацией) и химическими мутагенами.
Успех любых генетических исследований определяется не только знанием общих законов наследственности и изменчивости, но и знанием частной генетики организмов, с которыми ведется работа. Хотя основные законы генетики универсальны, они имеют у разных организмов и особенности, обусловленные различиями, например, в биологии размножения и строении генетического аппарата. Кроме того, для практических целей необходимо знать, какие гены участвуют в определении признаков данного организма. Поэтому изучение генетики конкретных признаков организма представляет собой обязательный элемент прикладных исследований.
Основные разделы генетики
Современная генетика представлена множеством разделов, представляющих как теоретический, так и практический интерес. Среди разделов общей, или «классической», генетики основными являются: генетический анализ, основы хромосомной теории наследственности, цитогенетика, цитоплазматическая (внеядерная) наследственность, мутации, модификации. Интенсивно развиваются молекулярная генетика, генетика онтогенеза (феногенетика), популяционная генетика (генетическое строение популяций, роль генетических факторов в микроэволюции), эволюционная генетика (роль генетических факторов в видообразовании и макроэволюции), генетическая инженерия, генетика соматических клеток, иммуногенетика, частная генетика - генетика бактерий, генетика вирусов, генетика животных, генетика растений, генетика человека, медицинская генетика и мн. др. Новейшая отрасль генетики - геномика - изучает процессы становления и эволюции геномов.
Влияние генетики на другие отрасли биологии
Генетика занимает центральное место в современной биологии, изучая явления наследственности и изменчивости, в большей степени определяющие все главные свойства живых существ. Универсальность генетического материала и генетического кода лежит в основе единства всего живого, а многообразие форм жизни есть результат особенностей его реализации в ходе индивидуального и исторического развития живых существ. Достижения генетики входят важной составной частью почти во все современные биологические дисциплины. Синтетическая теория эволюции представляет собою теснейшее сочетание дарвинизма и генетики. То же можно сказать о современной биохимии, основные положения которой о том, как контролируется синтез главнейших компонентов живой материи - белков и нуклеиновых кислот, основаны на достижениях молекулярной генетики. Цитология главное внимание уделяет строению, репродукции и функционированию хромосом, пластид и митохондрий, т. е. элементам, в которых записана генетическая информация. Систематика животных, растений и микроорганизмов все шире пользуется сравнением генов, кодирующих ферменты и другие белки, а также прямым сопоставлением нуклеотидных последовательностей хромосом для установления степени родства таксонов и выяснения их филогении. Разные физиологические процессы растений и животных исследуются на генетических моделях; в частности, при исследованиях физиологии мозга и нервной системы пользуются специальными генетическими методами, линиями дрозофилы и лабораторных млекопитающих. Современная иммунология целиком построена на генетических данных о механизме синтеза антител. Достижения генетики, в той или иной мере, часто очень значительной, входят составной частью в вирусологию, микробиологию, эмбриологию. С полным правом можно сказать, что современная генетика занимает центральное место среди биологических дисциплин.

- (от греч. genesis происхождение), наука о наследственности и изменчивости живых организмов и методах управления ими. В её основу легли закономерности наследственности, обнаруженные Г. Менделем при скрещивании разл. сортов гороха (1865), а также… … Биологический энциклопедический словарь

  • Генетика

    Набор аллелей для данного организма, называется его , а наблюдаемая характеристика или признак организма называют его . Когда говорят, что данный организм гетерозиготный по гену, часто одну аллель указывают как доминирующую (доминантную), поскольку ее качества преобладают в фенотипе организма, в то время как другие аллели называются рецессивными, поскольку их качества могут отсутствовать и не наблюдаться. Некоторые аллели не имеют полного доминирования, а взамен имеют неполное доминирование промежуточного фенотипа, или т.н. - обе черты являются доминантными одновременно, и обе черты присутствуют в фенотипе.

    Когда пара организмов размножается половым путем, их потомки случайно наследуют один из двух аллелей от каждого из родителей. Наблюдение дискретного наследования и сегрегация аллелей в общем известны как , или закон сегрегации (закон единообразия гибридов первого поколения).

    Взаимодействие нескольких генов

    Человеческий рост представляет собой комплексный генетический признак. Результаты исследования, полученные Фрэнсисом Гальтон в 1889 году, показывают взаимосвязь между ростом потомков и средним ростом их родителей. Однако корреляция не является абсолютной и присутствуют значительные отклонения от генетической изменчивости в росте потомков, что свидетельствует о том, что окружающая среда является также важным фактором этого признака.

    Организмы имеют тысячи генов, а во время полового размножения ассортимент этих генов в основном является независимым, то есть их наследования происходит случайным образом без связи между ними. Это означает, что наследование аллелей для желтого или зеленого цвета горошка не имеет отношения к наследованию аллелей для белого или фиолетового цвета цветов. Этот феномен, известный как , или "Закон независимого наследования" (закон расщепления признаков), означает, что аллели разных генов перемешиваются между родителями для формирования потомков с различными комбинациями. Некоторые гены не могут быть унаследованы отдельно, поскольку для них предназначена определенная генетическая связь, которая обсуждается в дальнейшем в статье.

    Часто разные гены могут взаимодействовать таким образом, что они влияют на одну и ту же характерную черту. Например, в пупочнике весеннем (Omphalodes verna) существует ген из аллелей, определяющих цвет цветка: голубой или пурпурный. Однако другой ген контролирует или вообще имеет цветок цвет либо он белый. Когда растение имеет две копии белой аллели, его цветы являются белыми, независимо от того первый ген имел голубую или пурпурную аллель. Это взаимодействие между генами, называется - активность одного гена находится под влиянием вариаций других генов.

    Многие признаки не являются дискретными чертами (например, фиолетовые или белые цветки), но зато есть непрерывными чертами (например, человеческий рост и цвет кожи). Этот комплекс признаков является следствием наличия многих генов. Влияние этих генов является связующим звеном различных степеней влияния окружающей среды на организмы. - это степень вклада генов организма к комплексу характерных черт. Измерение наследственности черт является относительным - в среде которая часто изменяется, она имеет большее влияние на общую смену характерных признаков. Например, в Соединенных Штатах рост человека является комплексной чертой с вероятностью наследования 89%. Однако, в Нигерии, где люди имеют существенную разницу в возможностях доступа к хорошему питания и здравоохранению, вероятность наследования такого признака как рост всего 62%.

    Воспроизведение

    Когда происходит деление клеток, их геном полностью копируется, и каждая дочерняя клетка наследует один полный набор генов. Этот процесс называется - простейшая форма воспроизведения и основа для вегетативного (бесполого) размножения. Вегетативное размножение может также происходить и в многоклеточных организмах, создавая потомков, которые наследуют геном от одного отца. Отпрысков, которые являются генетически идентичными с их родителями, называют клонами.

    Эукариотные организмы часто используют половое размножение для получения потомства, имеющие смешанный генетический материал, унаследованный от двух разных отцов. Процесс полового размножения меняется (чередуется) в зависимости от типа, который содержит одну копию генома ( и двойную копию (). Гаплоидные клетки образуются в результате и сливаясь с другой гаплоидной клеткой генетический материал для создания диплоидной клетки с парными хромосомами (напр. слияние (гаплоидная клетка) и (гаплоидная клетка)) вызывает образование . Диплоидные клетки путем деления образуют гаплоидные клетки, без воспроизведения их ДНК, для создания дочерних клеток, которые случайно наследуют одну из каждой пары хромосом. Большинство животных и многие растения являются диплоидными организмами на протяжении большей части своей жизни, с гаплоидной формой, которая характерна только для одной клетки - .

    Несмотря на то, что они не используют гаплоидный / диплоидный способ полового размножения бактерии имеют много способов получения новой генетической информации (то есть для изменчивости). Некоторые бактерии могут пройти , передавая небольшой круговой фрагмент ДНК другой бактерии. Бактерии могут также принимать чужеродные фрагменты ДНК из окружающей среды и интегрировать их в свой геном, этот феномен, известный как трансформация . Этот процесс называют также - передача фрагментов генетической информации между организмами, которые не связанны между собой.

    1865 год - Открытие Г. Менделем (1822-1884) факторов наследственности и разработка гибридологического метода, т. е. правил скрещивания организмов и учета признаков у их потомства.

    1868 год - швейцарский биохимик Ф. Мишер из спермы лосося выделил фосфорсодержащее вещество, происходящее из клеточных ядер, которое он назвал нуклеином (теперь его называют дезоксирибонуклеиновой кислотой).

    1871 год - Ч. Дарвин публикует свою книгу «Происхождение человека и половой отбор».

    1875 год - Ф. Гальтон демонстрирует возможность использования близнецов для изучения относительного влияния на организм наследственности и окружающей среды.

    1900 год - Формальное рождение генетики как науки. Независимая публикация статей Г. де Фриза, К. Корренса и Э. Чермака с изложением основных законов наследования. Фактически переоткрыты и стали известны широкой научной общественности исследования Г. Менделя.

    1902 год - В. Саттон и Т. Бовери независимо создают хромосомную теорию наследственности.

    1905 год - У. Бэтсон предлагает слово «генетика» (от греч. γιγνομαι – порождать ) для нового направления науки.

    1909 год - В. Иогансеном предложен термин – «генотип».

    1910 год - Томас Хант Морганом установлено, что гены расположены в хромосомах в линейном порядке, образуя группы сцепления. Морган установил также закономерности наследования признаков, сцепленных с полом (Нобелевская премия 1933 г. по физиологии и медицине за экспериментальное обоснование хромосомной теории наследственности).

    А. Кёссель получил Нобелевскую премию по химии за установление того, что в состав ДНК входят четыре азотистых основания: аденин, гуанин, цитозин и тимин.

    1917 год - Николаем Константиновичем Кольцовым основан Институт экспериментальной биологии.

    1920 год - термин «геном» впервые предложен немецким генетиком Г. Винклером.

    1922 год - Н. И. Вавилов сформулировал «закон гомологических рядов» – о параллелизме в изменчивости родственных групп растений, то есть о генетической близости этих групп. Закон Вавилова установил определенные правила формообразования и позволил предсказывать у данного вида еще не открытые, но возможные признаки (аналогия с системой Менделеева).

    1925 год - Г. А. Надсон, Г. С. Филиппов, Г. Мюллер проводят первый цикл работ по радиационным методам индукции мутаций.

    1926 год - С. С. Четвериков написал статью, заложившую основы популяционной генетики и синтеза генетики и теории эволюции.

    1927 год - Г. Мюллер доказал мутационный эффект рентгеновских лучей, за что в 1946 г. получил Нобелевскую премию в области физиологии и медицины.

    Н. К. Кольцов выдвинул идею матричного синтеза, которая позднее легла главным камнем в основание молекулярной биологи: «В основе каждой хромосомы лежит тончайшая нить, которая представляет собой спиральный ряд огромных органических молекул – генов. Возможно, вся эта спираль является одной гигантской длины молекулой» .

    1928 год - Открытие явления трансформации у бактерий (Ф. Гриффит).

    1929-1930 годы - А. С. Серебровский и Н. П. Дубинин впервые продемонстрировали сложную природу организации гена; первые реальные шаги на пути создания современного представления о тонкой структуре гена.

    1931 год - Барбара Мак–Клинток продемонстрировала наличие кроссинговера.

    1934 год - Н. П. Дубинин и Б. Н. Сидоров открыли особый тип эффекта положения.

    Б. Л. Астауров осуществил успешные опыты по получению у шелкопряда потомства из неоплодотворенных яиц (одно из самых интересных достижений в прикладной генетике того времени).

    1935 год - Н. В. Тимофеев–Ресовский, К. Г. Циммер, М. Дельбрюк осуществили экспериментальное определение размеров гена. Ими дана трактовка гена с позиций квантовой механики, тем самым был создан фундамент для открытия структуры ДНК.

    1940 год - Дж. Бидл и Э. Татум сформулировали теорию «один ген – один фермент». (Нобелевская премия по физиологии и медицине за 1958 г.).

    1943 год - И. А. Рапопорт, Ш. Ауэрбах и Дж. Г. Робсон впервые показали индукцию мутаций химическими веществами.

    1944 год - начало «эры ДНК». О. Эвери, К. Маклеод и М. Маккарти установили, что «веществом гена» служит ДНК. В своих экспериментах по трансформации бактерий эти учёные показали, что проникновение молекул очищенной ДНК, выделенной из вирулентных пневмококков, вызывающих заболевание и гибель зараженных мышей, в клетки авирулентного штамма этих бактерий может сопровождаться превращением (трансформацией) последних в вирулентную форму.

    М. Дельбрюк, С. Лурия, А. Херши произвели пионерские исследования по генетике кишечной палочки и ее фагов, после чего эти объекты стали модельными для генетических исследований на многие десятилетия. (Нобелевская премия по физиологии и медицине за 1969 год за открытие цикла репродукции вирусов и развитие генетики бактерий и вирусов).

    Л. А. Зильбер сформулировал вирусно–генетическую теорию рака.

    1946 год - Меллер Герман Джозеф (1890-1967), американский генетик получил Нобелевскую премию за открытие радиационного мутагенеза.

    1950 год - Э. Чаргафф сформулировал знаменитое «правило Чаргаффа», которое гласит: в ДНК число нуклеотидов А равно числу Т, а число Г – числу Ц.

    Б. Мак–Клинток показала существование перемещающихся генетических элементов. С большим опозданием (только в 1983 г.) она получила за это Нобелевскую премию в области физиологии и медицины.

    1951 год - Р. Франклин и М. Уилкинсон получили первую рентгеннограмму молекулы ДНК.

    1953 год, 25 апреля - Френсис Крик и Джеймс Уотсон, опираясь на результаты опытов генетиков и биохимиков и на данные рентгеноструктурного анализа, создали структурную модель ДНК в форме двойной спирали. В английском журнале «Nature» они опубликовали небольшую статью со своей моделью. В 1962 году им совместно с М. X. Ф. Уилкинсом присуждена Нобелевская премия по физиологии и медицине.

    1956 год - Ю. Тио и A. Леван установили, что диплоидный набор хромосом у человека равен 46.

    А. Корнберн обнаружил первый фермент, способный синтезировать ДНК в пробирке – ДНК–полимеразу I. В 1959 году он совместно с С. Очоа получил Нобелевскую премию по физиологии и медицине за исследование механизма биологического синтеза РНК и ДНК.

    1958 год - М. Мезельсон и Ф. Сталь доказали полуконсервативный механизм репликации ДНК.

    1960 год - Открытие РНК–полимеразы С. Б. Вейсом, Дж. Гурвицем и А. Стивенсом.

    И. А. Рапопорт сообщил об открытии «супермутагенов».

    1961 год - В работах М. У. Ниренберга, Р. У. Холли и X. Г. Кораны начата расшифровка «языка жизни» – кода, которым в ДНК записана информация о структуре белковых молекул. В 1968 году все трое разделили Нобелевскую премию по физиологии и медицине, которая была присуждена им «за расшифровку генетического кода и его функционирования в синтезе белков».

    Ф. Жакоб и Ж. Моно пришли к выводу о существовании двух групп генов – структурных, отвечающих за синтез специфических (ферментных) белков, и регуляторных, осуществляющих контроль за активностью структурных генов. В 1965 г. Нобелевская премия по физиологии и медицине присуждена А. М. Львову, Ф. Жакобу и Ж. Моно за открытие генетической регуляции синтеза ферментов и вирусов.

    Весной этого года в Москве на Международном биохимическом конгрессе ученый М. Ниренберг сообщил, что ему удалось «прочесть» первое «слово» в тексте ДНК. Это была тройка нуклеотидов - ААА (в РНК, соответственно, УУУ), то есть три аденина, стоящие друг за другом. Эта последовательность кодирует аминокислоту фенилаланин в белке.

    1962 год - Дж. Гёрдон осуществил первое клонирование животного организма (лягушка).

    Дж. Кэндрью и М. Перутц были удостоены Нобелевской премии по химии за впервые осуществленную расшифровку трехмерной структуры белков миоглобина и гемоглобина.

    1965 год - Р. Б. Хесин показал, что регуляция синтеза белка осуществляется путем включения и выключения транскрипции генов.

    1966 год - Б. Вейс и С. Рихардсон открывают фермент ДНК–лигазу.

    1969 год - Х. Г. Корана синтезировал химическим путем первый ген.

    1970 год - Открытие обратной транскриптазы, фермента, синтезирующего ДНК с использованием комплементарной РНК в качестве матрицы. Это было сделано будущими Нобелевскими лауреатами по физиологии и медицине (1975) Г. Теминым и Д. Балтимором.

    Выделена первая рестриктаза – фермент, разрезающий ДНК в строго определенных местах. За это открытие в 1978 году Нобелевская премия по физиологии и медицине была присуждена Д. Натансу, Х. Смиту и В. Арберу.

    1972 год - В лаборатории Пола Берга получены первые рекомбинантные ДНК (Нобелевская премия по химии за 1980 г. вручена П. Бергу и Г. Бойеру). Заложены основы генной инженерии.

    1973 год - С. Коэн и Г. Бойер разработали стратегию переноса генов в бактериальную клетку.

    1974 год - С. Милстайн и Г. Келер создали технологию получения моноклональных антител. Ровно десять лет спустя они (вместе с Н. К. Ерне) получили за это Нобелевскую премию по физиологии и медицине.

    Р. Д. Корнберг описывает структуру хроматина (нуклеосомы).

    1975 год - С. Тонегава показал различное расположение генов, кодирующих вариабельную и константную часть иммуноглобулинов, в ДНК эмбриональных и миелоидных клеток, что дало основание для вывода о перегруппировках генов иммуноглобулинов при образовании клеток иммунной системы (Нобелевская премия по физиологии и медицине в 1987 г.). Осуществлено первое клонирование кДНК.

    Е. Саузерн описал метод переноса фрагментов ДНК на нитроцел–люлозные фильтры, метод получил название Саузерн–блот гибридизации.

    1976 год - Открытие у животных (на примере дрозофилы) «прыгающих генов», сделанное Д. Хогнессом (США) и российскими учеными во главе с Г. П. Георгиевым и В. А. Гвоздевым.

    Основана первая генно–инженерная компания (Genentech), использующая технологию рекомбинантных ДНК для производства различных ферментов и лекарственных средств.

    Д. М. Бишоп и Г. Э. Вармус сообщили, что онкоген в вирусе представляет собою не истинный вирусный ген, а клеточный ген, который вирус «подхватил» когда–то давно в ходе репликации в клетках и теперь сохраняет в измененном мутациями виде. Было также показано, что его предшественник, клеточный протоонкоген, в здоровой клетке играет важнейшую роль-управляет ее ростом и делением. В 1989 г. оба этих ученых получили Нобелевскую премию по физиологии и медицине за фундаментальные исследование канцерогенных генов опухоли.

    1977 год - Опубликованы быстрые методы определения (секвенирования) длинных нуклеотидных последовательностей ДНК (У. Гилберт и А. Максам; Ф. Сенгер с соавт.). Появилось реальное средство анализа структуры генов как основа для понимания их функций. В 1980 году У. Гильберт и Ф. Сенгер совместно с П. Бергом получили Нобелевскую премию по химии «за существенный вклад в установление первичной структуры ДНК; за фундаментальные исследования биохимических свойств нуклеиновых кислот, в том числе рекомбинант–ных ДНК».

    Полностью секвенирован геном бактериофага φΧ174 (5386 п. н.).

    Секвенирован первый ген человека – ген, кодирующий белок хорионный соматомаммотропин.

    П. Шарп и Р. Робертс показали, что гены у аденовирусов (позднее выяснилось, что и у эукариотических организмов) имеют моаичную экзон–интронную структуру, и открыли явление сплайсинга (Нобелевская премия по физиологии и медицине в 1993 г.).

    К. Итакура с соавт. синтезируют химически ген соматостатина человека и осуществляет искусственный синтез гормона соматостатина в клетках кишечной палочки E. coli.

    1978 год - Компания Genentech осуществила перенос эукариотического гена инсулина в бактериальную клетку, где на нем синтезирован белок – проинсулин.

    Определена полная последовательность нуклеотидов ДНК вируса SV40 и фага fd .

    1979 год - Показано, что химически трансформированные клетки содержат активированный онкоген BAS .

    1980 год - Дж. Гордоном с соавт. получена первая трансгенная мышь. В пронуклеус оплодотворенного одноклеточного эмбриона микроинъекцией введен ген тимидин–киназы вируса простого герпеса и показано, что этот ген работает во всех соматических клетках мыши. С тех пор трансгеноз стал основным подходом как для фундаментальных исследований, так и для решения практических задач сельского хозяйства и медицины.

    1981 год - Определена полная нуклеотидная последовательность митохондриальной ДНК человека.

    Несколько независимых исследовательских групп сообщили об открытии человеческих онкогенов.

    1982 год - Определена полная нуклеотидная последовательность бактериофага λ (48502 п. н.).

    Показано, что РНК может обладать каталитическими свойствами, как и белок.

    1983 год - С помощью биоинформатики найдена гомология фактора роста PDGF с известным онкобелком, кодируемым онкогеном SIS.

    Показано, что разные онкогены кооперируют при опухолевой трансформации клеток.

    Ген болезни Хантигтона локализован на хромосоме 4 человека.

    1984 год - У. Мак–Гиннис открыл гомеотические (Hox) регуляторные гены, ответственные за построение общего плана тела животных.

    А. Джеффрис создает метод геномной дактилоскопии, в котором нуклеотидные последовательности ДНК используются для идентификации личности.

    1985 год - Создание К. Б. Мюллисом революционизирующей технологии – полимеразной цепной реакции, ПЦР – наиболее чувствительного до сих пор метода детектирования ДНК. Эта технология получила широкое распространение (Нобелевская премия по химии за 1993 г.).

    Клонирование и определение нуклеотидной последовательности ДНК, выделенной из древней египетской мумии.

    1986 год - Клонирование гена RB – первого антионкогена – супрессора опухолей. Начало эпохи массированного клонирования генов опухолеобразования.

    1987 год - Созданы первые дрожжевые искусственные хромосомы – YAC (Yeast Artificial Chromosomes). Они сыграют большую роль как векторы для клонирования больших фрагментов геномов.

    1988 год - создан проект «Геном человека» Национального института здоровья США. Инициатором и руководителем этого проекта стал лауреат Нобелевской премии знаменитый ученый Джеймс Уотсон.

    Под эгидой Комитета по науке и технике в СССР начала работу программа «Геном человека», которую возглавил Научный совет по геномной программе во главе с академиком А. А. Баевым.

    Показана возможность анализа митохондриальной ДНК из очень древних образцов при исследовании мозга человека давностью 7000 лет.

    Предложен метод «нокаута» генов.

    1989 год - Т. Р. Чех и С. Альтман получили Нобелевскую премию по химии за открытие каталитических свойств некоторых природных РНК (рибозимов).

    1990 год - в США и в СССР, а затем в Англии, Франции, Германии, Японии, Китае начали работать научные программы по расшифровке генома человека. Объединила эти проекты Международная организация по изучению генома человека (Human Genome Organization, сокращенно HUGO). Вице–президентом HUGO в течение нескольких лет был российский академик А. Д. Мирзабеков.

    Ф. Коллинз и Л. – Ч. Тсуи идентифицировали первый ген человека (CFTR), ответственный за наследственное заболевание (кистозный фиброз), который расположен на хромосоме 7.

    В. Андерсоном осуществлено первое успешное применение генной терапии для лечения больной с наследственным иммунодефицитом.

    Определена полная последовательность генома вируса оспо–вакцины (192 т. п. н.).

    1992 год - Э. Кребсу и Э. Фишеру присуждена Нобелевская премия по физиологии и медицине за открытие обратимого фосфорилирования белков как важного регулирующего механизма клеточного метаболизма.

    1995 год - компанией «Celera Genomics» определена полная последовательность генома первого самостоятельно существующего организма – бактерии Haemophilus influenzae (1 830 137 п. н.)

    Становление геномики как самостоятельного раздела генетики.

    1997 год - Определена полная последовательность нуклеотидов геномов кишечной палочки E. coli и дрожжей Saccharomyces cerevisiae.

    Нобелевская премия по физиологии и медицине присуждена американцу С. Прузинеру за вклад в изучение болезнетворного агента белковой природы, приона, вызывающего губчатую энцефалопатию, или «коровье бешенство» у крупного рогатого скота.

    Я. Вильмут с сотрудниками впервые клонировали млекопитающее – овцу Долли .

    1998 год - расшифровано всего около 3% генома человека.

    Определена полная нуклеотидная последовательность первого высшего организма – нематоды Caenorhabditis elegans.

    У нематоды C. elegans обнаружен механизм РНК–интерференции.

    1999 год - Роберт Фурчготт, Луис Игнарро и Ферид Мурад получили Нобелевскую премию за открытие роли оксида азота в качестве сигнальной молекулы (то есть, регулятора и переносчика сигналов) сердечно–сосудистой системы.

    Учёные клонировали мышь и корову.

    1999 год, декабрь - в журнала Nature за появилась статья под названием «Нуклеотидные последовательности первой хромосомы человека». В этой статье коллектив, состоящий из более чем двухсот авторов, сообщил о полной расшифровке одной из самых малых хромосом человека – хромосомы под номером 22.

    2000 год - Нобелевская премия по физиологии и медицине присуждена А. Карлссону, П. Грингарду и Э. Кенделу за открытие, касающееся «передачи сигналов в нервной системе».

    Учёные клонировали свинью.

    2000 год, июнь - два конкурирующих коллектива – «Celera Genomics» и международный консорциум HUGO, объединив свои данные, официально объявили о том, что их совместными усилиями в целом завершена расшифровка генома человека, создан его черновой вариант.

    2001 год - Нобелевская премия по физиологии и медицине присуждена Л. Хартвеллу, Т. Ханту и П. Нерсу за открытие ключевых регуляторов клеточного цикла.

    2001 год, февраль - появились первые научные публикации чернового варианта структуры генома человека.

    2002 год - Полностью расшифрован геном мыши.

    Нобелевская премия по физиологии и медицине присуждена С. Бреннеру, Р. Хорвитцу и Дж. Салстону за их открытия в области генетического регулирования развития органов и запрограммированной клеточной смерти.

    >Рефераты по биологии

    Генетика

    Генетика – одна из самых важных областей биологии. Это наука о закономерностях наследственности и изменчивости. Слово «генетика» имеет греческое происхождение и в переводе обозначает «происходящий от кого-то». Объектами исследования могут выступать растения, животные, люди, микроорганизмы. Генетика тесно связана с такими науками, как генная инженерия, медицина, микробиология и другими.

    Изначально генетика рассматривалась как закономерность наследственности и изменчивости на основе внешних и внутренних признаков организма. На сегодняшний день известно, что гены существуют и представляют собой специально отмеченные участки ДНК или РНК, то есть молекулы, в которых запрограммирована вся генетическая информация.

    Судя по археологическим доказательствам людям уже более 6000 лет известно, что некоторые физические признаки могут передаваться из поколения в поколение. Человек даже научился создавать улучшенные сорта растений и породы животных путем отбора определенных популяций и скрещивания их между собой. Однако важность генетики в полной мере стала известна лишь в XIX-XX веках с появлением современных микроскопов. Большой вклад в развитие генетики внес австрийский монах Грегор Мендель. В 1866 году он представил свою работу об основах современной генетики. Он доказал, что наследственные задатки не смешиваются, а передаются от поколения к поколению в виде обособленных единиц. В 1912 году американский генетик Томас Морган, доказал, что эти единицы находятся в хромосомах. С тех пор классическая генетика сделала научный шаг вперед и достигла больших успехов в объяснении наследственности не только на уровне организма, но и на уровне гена.

    В 1940-1950-х годах началась эпоха молекулярной генетики. Появились доказательства ведущей роли ДНК в передаче наследственной информации. Открытием стала расшифровка структуры ДНК, триплетного кода и описание механизмов биосинтеза белка. Также, были обнаружены аминокислотная или нуклеотидная последовательность ДНК и РНК.

    Первые опыты в России появились в XVIII веке и были связаны с гибридизацией растений. В XX веке появились важные работы в среде экспериментальной ботаники и зоологии, а также на опытных сельскохозяйственных станциях. К концу 1930-х годов в стране появилась сеть организованных научно-исследовательских институтов, опытных станций и вузовских кафедр генетики. В 1948 году генетика была объявлена лженаукой. Восстановление науки произошло после открытия и расшифровки структуры ДНК, примерно в 1960-е годы.­

    Хотя история генетики началась в XIX веке, еще древние люди замечали, что животные и растения передают в ряду поколений свои признаки. Другими словами, было очевидно, что в природе существует наследственность. При этом отдельные признаки могут изменяться. То есть помимо наследственности в природе существует изменчивость. Наследственность и изменчивость относятся к основным свойствам живой материи. Долгое время (до XIX-XX веков) истинная причина их существования была скрыта от человека. Это порождало ряд гипотез, которые можно разделить на два типа: прямое наследование и непрямое наследование.

    Приверженцы прямого наследования (Гиппократ, Ламарк, Дарвин и др.) предполагали, что дочернему организму через определенные субстанции (геммулы по Дарвину), собирающиеся в половых продуктах, передается информация от каждого органа и каждой части тела родительского организма. По Ламарку следовало, что повреждение или сильное развитие органа напрямую передастся следующему поколению. Гипотезы непрямого наследования (Аристотель в IV в. до н. э., Вейсман в XIX в.) утверждали, что половые продукты образуются в организме отдельно и «не знают» об изменениях в органах тела.

    В любом случае обе гипотезы искали «субстрат» наследственности и изменчивости.

    История генетики как науки началась с работ Грегора Менделя (1822-1884), который в 60-х годах провел систематические и многочисленные опыты над горохом, установил ряд закономерностей наследственности, впервые высказал предположения об организации наследственного материала. Правильный выбор объекта исследования, изучаемых признаков, а также научная удача позволили ему сформулировать три закона:

    Мендель понял, что наследственный материал дискретен, представлен отдельными задатками, передающимися потомству. При этом каждый задаток отвечает за развитие определенного признака организма. Признак обеспечивается парой задатков, пришедших с половыми клетками от обоих родителей.

    В то время научному открытию Менделя не придали особого значения. Его законы были переоткрыты в начале XX века несколькими учеными на разных растениях и животных.

    В 80-х годах XIX века были описаны митоз и мейоз, в ходе которых между дочерними клетками закономерно распределяются хромосомы. В начале XX века Т. Бовери и У. Сеттон пришли к выводу, что преемственность свойств в ряду поколений организмов определяется преемственностью их хромосом . То есть к этому периоду времени научный мир понял, в каких структурах заключается «субстрат» наследственности.

    У. Бэтсоном был открыт закон чистоты гамет , а наука о наследственности и изменчивости впервые в истории была названа им генетикой . В. Иогансен ввел в науку понятия (1909 г.), генотипа и фенотипа . В то время ученые уже поняли, что ген представляет собой элементарный наследственный фактор . Но его химическая природа еще не была известна.

    В 1906 году было открытоявление сцепления генов , в том числе наследование признаков, сцепленное с полом . Понятие генотипа подчеркивало, что гены организма не просто набор независимых единиц наследственности, они образуют систему, в которой наблюдаются определенные зависимости.

    Параллельно с изучением наследственности происходили открытия закономерностей изменчивости. В 1901 году де Фризом были заложены основы учения о мутационной изменчивости, связанной с возникновением изменений в хромосомах, что приводит к возникновению изменений признаков. Чуть позже было обнаружено, что часто возникают при воздействии радиации, определенных химических веществ и др. Таким образом было доказано, что хромосомы являются не только «субстратом» наследственности, но также изменчивости.

    В 1910 году, во многом обобщая более ранние открытия, группой Т. Моргана была разработана хромосомная теория :

      Гены находятся в хромосомах и расположены там линейно.

      У каждой хромосомы есть гомологичная ей.

      От каждого из родителей потомок получает по одной из каждых гомологичных хромосом.

      Гомологичные хромосомы содержат одинаковый набор генов, но аллели генов могут быть разными.

      Гены, находящиеся в одной хромосоме, наследуются совместно () при условии их близкого расположения.

    Среди прочего в начале XX века была обнаружена внехромосомная, или цитоплазматическая, наследственность, связанная с митохондриями и хлоропластами.

    Химический анализ хромосом показал, что они состоят из белков и нуклеиновых кислот. В первой половине XX века многие ученые склонялись к мнению, что белки являются носителями наследственности и изменчивости.

    В 40-х годах XX века в истории генетики происходит скачок. Исследования переходят на молекулярный уровень.

    В 1944 году обнаруживается, что за наследственные признаки отвечает такое вещество клетки как . ДНК признается носителем генетической информации. Чуть позже было сформулировано, что один ген кодирует один полипептид .

    В 1953 г. Д. Уотсон и Ф. Крик расшифровали структуру ДНК. Оказалось что это двойная спираль, состоящая из нуклеотидов . Ими была создана пространственная модель молекулы ДНК.

    Позже были открыты следующие свойства (60-е годы):

      Каждая аминокислота полипептида кодируется триплетом (тремя азотистыми основаниями в ДНК).

      Каждую аминокислоту кодирует один триплет или более.

      Триплеты не перекрываются.

      Считывание начинается со стартового триплета.

      В ДНК нет «знаков препинания».

    В 70-х годах в истории генетики происходит еще один качественный скачок – развитие генной инженерии . Ученые начинают синтезировать гены, изменять геномы . В это время активно изучаются молекулярные механизмы, лежащие в основе различных физиологических процессов .

    В 90-х годах секвенируются геномы (расшифровывается последовательность нуклеотидов в ДНК) многих организмов. В 2003 году был завершен проект по секвенированию генома человека. В настоящее время существуют геномные базы данных . Это дает возможность комплексно исследовать физиологические особенности, заболевания человека и других организмов, а также определять родственную связь между видами. Последнее позволило систематике живых организмов выйти на новый уровень.