Лето

Органика и неорганика химия. Общая химия. Неорганическая химия. Основы неорганической химии

Курс неорганической химии содержит множество специальных терминов, необходимых для проведения количественных вычислений. Рассмотрим подробно некоторые из ее основных разделов.

Особенности

Неорганическая химия была создана с целью определения характеристики веществ, имеющих минеральное происхождение.

Среди основных разделов данной науки выделяют:

  • анализ строения, физических и химических свойств;
  • взаимосвязь между строением и реакционной способностью;
  • создание новых методов синтеза веществ;
  • разработку технологий очистки смесей;
  • методы изготовления материалов неорганического вида.

Классификация

Неорганическая химия подразделяется на несколько разделов, занимающихся изучением определенных фрагментов:

  • химических элементов;
  • классов неорганических веществ;
  • полупроводниковых веществ;
  • определенных (переходных) соединений.

Взаимосвязь

Неорганическая химия взаимосвязана с физической и аналитической химией, которые обладают мощным набором инструментов, позволяющих проводить математические вычисления. Теоретический материал, рассматриваемый в данном разделе, применяют в радиохимии, геохимии, агрохимии, а также в ядерной химии.

Неорганическая химия в прикладном варианте связана с металлургией, химической технологией, электроникой, добычей и переработкой полезных ископаемых, конструкционных и строительных материалов, очисткой промышленных стоков.

История развития

Общая и неорганическая химия развивалась вместе с человеческой цивилизацией, потому включает в себя несколько самостоятельных разделов. В начале девятнадцатого века Берцелиусом была опубликована таблица атомных масс. Именно этот период стал началом развития данной науки.

В качестве основы неорганической химии выступили исследования Авогадро и Гей-Люссака, касающиеся характеристик газов и жидкостей. Гессу удалось вывести математическую связь между количеством теплоты и агрегатным состоянием вещества, что существенно расширило горизонты неорганической химии. Например, появилась атомно-молекулярная теория, которая ответила на множество вопросов.

В начале девятнадцатого века Дэви сумел разложить электрохимическим способом гидроксиды натрия и калия, открыв новые возможности для получения простых веществ путем электролиза. Фарадей, основываясь на работе Дэви, вывел законы электрохимии.

Со второй половины девятнадцатого века курс неорганической химии существенно расширился. Открытия Вант-Гоффа, Аррениуса, Освальда внесли новые веяния в теорию растворов. Именно в этот временной период был сформулирован закон действующих масс, позволивший проводить различные качественные и количественные вычисления.

Учение о валентности, созданное Вюрцом и Кекуле, позволило найти ответы на многие вопросы неорганической химии, связанные с существованием разных форм оксидов, гидроксидов. В конце девятнадцатого века были открыты новые химические элементы: рутений, алюминий, литий: ванадий, торий, лантан, и др. Это стало возможным после введения в практику методики спектрального анализа. Инновации, появившиеся в тот период в науке, не только объяснили химические реакции в неорганической химии, но и позволили предсказывать свойства получаемых продуктов, области их применения.

К концу девятнадцатого века было известно о существовании 63 различных элементов, а также появились сведения о разнообразных химических веществах. Но из-за отсутствия их полной научной классификации, можно было решать далеко не все задачи по неорганической химии.

Закон Менделеева

Периодический закон, созданный Дмитрием Ивановичем, стал базой для систематизации всех элементов. Благодаря открытию Менделеева, химикам удалось скорректировать представления об атомных массах элементов, предсказать свойства тех веществ, которые еще не были открыты. Теория Мозли, Резерфорда, Бора, придала физическое обоснование периодическому закону Менделеева.

Неорганическая и теоретическая химия

Для того чтобы понять, что изучает химия, нужно рассмотреть основные понятия, включенные в этот курс.

Основным теоретическим вопросом, изучаемым в данном разделе, является периодический закон Менделеева. Неорганическая химия в таблицах, представленная в школьном курсе, знакомит юных исследователей с основными классами неорганических веществ, их взаимосвязью. Теория химической связи рассматривает природу связи, ее длину, энергию, полярность. Метод молекулярных орбиталей, валентных связей, теория кристаллического поля - основные вопросы, позволяющие объяснять особенности строения и свойств неорганических веществ.

Химическая термодинамика и кинетика, отвечающие на вопросы, касающиеся изменения энергии системы, описание электронных конфигураций ионов и атомов, их превращение в сложные вещества, базирующиеся на теории сверхпроводимости, дали начало новому разделу - химии полупроводниковых материалов.

Прикладной характер

Неорганическая химия для чайников предполагает использование теоретических вопросов в промышленности. Именно этот раздел химии стал основой для разнообразных производств, связанных с производством аммиака, серной кислоты, углекислого газа, минеральных удобрений, металлов и сплавов. С помощью химических методов в машиностроении получают сплавы с заданными свойствами и характеристиками.

Предмет и задачи

Что изучает химия? Это наука о веществах, их превращениях, а также областях применения. На данный временной промежуток есть достоверные сведения о существовании порядка ста тысяч разнообразных неорганических соединений. При химических превращениях происходит изменение состава молекул, образуются вещества с новыми свойствами.

Если изучается неорганическая химия с нуля, необходимо сначала познакомиться с ее теоретическими разделами, и только после этого можно приступать к практическому использованию полученных знаний. Среди многочисленных вопросов, рассматриваемых в этом разделе химической науки, необходимо упомянуть атомно-молекулярное учение.

Молекула в нем рассматривается в качестве наименьшей частицы вещества, обладающей его химическими свойствами. Она делимы до атомов, являющихся самыми небольшими частицами вещества. Молекулы и атомы находятся в постоянном движении, для них характерны электростатические силы отталкивания и притяжения.

Неорганическая химия с нуля должна базироваться на определении химического элемента. Под ним принято подразумевать вид атомов, имеющих определенный ядерный заряд, строение электронных оболочек. В зависимости от строения, они способны вступать в разнообразные взаимодействия, образуя вещества. Любя молекула является электрически нейтральной системой, то есть, в полной мере подчиняется всем законам, существующим в микросистемах.

Для каждого элемента, существующего в природе, можно определить количество протонов, электронов, нейтронов. В качестве примера приведем натрий. Число протонов в его ядре соответствует порядковому номеру, то есть, 11, и равно числу электронов. Для вычисления числа нейтронов, необходимо вычесть из относительной атомной массы натрия (23) его порядковый номер, получим 12. Для некоторых элементов были выявлены изотопы, отличающиеся по количеству нейтронов в атомном ядре.

Составление формул по валентности

Чем еще характеризуется неорганическая химия? Темы, рассматриваемые в этом разделе, предполагают составление формул веществ, проведение количественных вычислений.

Для начала проанализируем особенности составления формул по валентности. В зависимости от того, какие элементы будут включены в состав вещества, существуют определенные правила определения валентности. Начнем с составления бинарных соединений. Данный вопрос рассматривается в школьном курсе неорганической химии.

У металлов, располагающихся в главных подгруппах таблицы Менделеева, показатель валентности соответствует номеру группы, является постоянной величиной. Металлы, находящиеся в побочных подгруппах, могут проявлять различные валентности.

Есть некоторые особенности в определении валентности у неметаллов. Если в соединении он располагается в конце формулы, то проявляет низшую валентность. При ее вычислении, из восьми вычитают номер группы, в которой располагается этот элемент. Например, в оксидах, кислорода проявляет валентность два.

Если же неметалл располагается в начале формулы, он демонстрирует максимальную валентность, равную номеру его группы.

Как составить формулу вещества? Есть определенный алгоритм, которым владеют даже школьники. Сначала необходимо записать знаки элементов, упоминаемых в названии соединения. Тот элемент, который в наименовании указывается последним, в формуле располагают на первом месте. Далее над каждым из них ставят, пользуясь правилами, показатель валентности. Между значениями определяют наименьшее общее кратное. При его делении на валентности, получают индексы, располагаемые под знаками элементов.

Приведем в качестве примера вариант составления формулы оксида углерода (4). Сначала располагаем рядом знаки углерода и кислорода, входящие в состав данного неорганического соединения, получаем СО. Поскольку первый элемент имеет переменную валентность, она указана в скобках, у кислорода ее считают, вычитая из восьми шесть (номер группы), получают два. Конечная формула предложенного оксида будет иметь вид СО 2 .

Среди многочисленных научных терминов, используемых в неорганической химии, особый интерес представляет аллотропия. Она поясняет существование нескольких простых веществ, имеющих в основе один химический элемент, отличающийся между собой по свойствам и строению.

Классы неорганических веществ

Существует четыре основных класса неорганических веществ, заслуживающих детального рассмотрения. Начнем с краткой характеристики оксидов. Данный класс предполагает бинарные соединения, в которых обязательно присутствует кислород. В зависимости от того, какой элемент начинает формулу, существует их подразделение на три группы: основные, кислотные, амфотерные.

Металлы, имеющие валентность больше четырех, а также все неметаллы, образуют с кислородом кислотные оксиды. Среди их основных химических свойств, отметим способность взаимодействовать с водой (исключением является оксид кремния), реакции с основными оксидами, щелочами.

Металлы, валентность которых не превышает двух, образуют основные оксиды. Среди основных химических свойств данного подвида, выделим образование щелочей с водой, солей с кислотными оксидами и кислотами.

Для переходных металлов (цинка, бериллия, алюминия) характерно образование амфотерных соединений. Их основным отличием является двойственность свойств: реакции со щелочами и кислотами.

Основаниями называют масштабный класс неорганических соединений, имеющих схожее строение и свойства. В молекулах таких соединений содержится одна либо несколько гидроксильных групп. Сам термин был применен к тем веществам, которые в результате взаимодействия образуют соли. Щелочами называют основания, имеющие щелочную среду. К ним относят гидроксиды первой и второй групп главных подгрупп таблицы Менделеева.

В кислых солях, помимо металла и остатка от кислоты, есть катионы водорода. Например, гидрокарбонат натрия (пищевая сода) является востребованным соединением в кондитерской промышленности. В основных солях вместо катионов водорода находятся гидроксид-ионы. Двойные соли это составная часть многих природных минералов. Так, хлорид натрия, калия (сильвинит) находится в земной коре. Именно это соединение в промышленности используют для выделения щелочных металлов.

В неорганической химии существует специальный раздел, занимающийся изучением комплексных солей. Эти соединения активно участвуют в обменных процессах, происходящих в живых организмах.

Термохимия

Данный раздел предполагает рассмотрение всех химических превращений с точки зрения потери либо приобретения энергии. Гессу удалось установить зависимость между энтальпией, энтропией, и вывести закон, объясняющий изменение температуры для любой реакции. Тепловой эффект, характеризующий количество выделяемой либо поглощаемой энергии в данной реакции, определяется как разность суммы энтальпий продуктов реакций и исходных веществ, взятых с учетом стереохимических коэффициентов. Закон Гесса является основным в термохимии, позволяет проводить количественные расчеты для каждого химического превращения.

Коллоидная химия

Только в двадцатом веке данный раздел химии стал отдельной наукой, занимающейся рассмотрением разнообразных жидких, твердых, газообразных систем. Суспензии, взвеси, эмульсии, отличающиеся по размерам частиц, химических параметрам, подробно изучаются в коллоидной химии. Результаты многочисленных исследований активно внедряются в фармацевтической, медицинской, химической промышленности, дают возможность ученым и инженерам синтезировать вещества с заданными химическими и физическими характеристиками.

Заключение

Неорганическая химия в настоящее время является одним из самых больших разделов химии, содержит огромное количество теоретических и практических вопросов, позволяющих получать представления о составе веществ, их физических свойствах, химических превращениях, основных отраслях применения. При владении основными терминами, законами, можно составлять уравнения химических реакций, осуществлять по ним разнообразные математические вычисления. Все разделы неорганической химии, связанные с составлением формул, записью уравнений реакций, решением задач на растворы предлагаются ребятам на выпускном экзамене.

НЕОРГАНИЧЕСКАЯ ХИМИЯ

Учебно-методический комплекс

Часть первая. Программа лекционного курса

Нижний Новгород, 2006


УДК 546 (073.8)

Неорганическая химия: Учебно-методический комплекс. Часть первая. Программа лекционного курса / А.А.Сибиркин.- Нижний Новгород: ННГУ, 2006.- 34 с.

Первая часть учебно-методического комплекса содержит план курса лекций по неорганической химии для студентов первого курса химического факультета ННГУ им. Н.И.Лобачевского.

Для студентов 1 курса химического факультета, изучающих курс неорганической химии.

© А.А.Сибиркин, 2006

© Нижегородский госуниверситет

им. Н.И.Лобачевского, кафедра

неорганической химии


Пояснительная записка

Курс неорганической химии, преподаваемый на химическом факультете ННГУ, ставит своей целью обеспечить овладение студентами основами неорганической химии как одной из фундаментальных дисциплин в системе химического знания.

Основными задачами курса являются: усвоение студентами основных закономерностей химических превращений; знание фактического материала, относящегося к распространенности и формам нахождения химических элементов в природе, принципам переработки минерального сырья, методам получения, строению, физическим свойствам и реакционной способности, практическому использованию неорганических веществ; формирование умения решать стандартные и комбинированные на их основе расчетные задачи, относящиеся к свойствам неорганических веществ; овладение на практике основами химического эксперимента, важнейшими методами получения и очистки неорганических веществ.

Содержание курса предусматривает разъяснение важнейших понятий физической химии и строения вещества, развитие умения применять изученные закономерности для решения практических задач, что реализует идею концентричности химического образования в высшей школе. Понимание закономерностей протекания реакций и реакционной способности веществ является основой для формирования обширных и глубоких знаний фактического материала по химии элементов и их соединений.

В результате изучения курса неорганической химии студенты должны:

Знать, как научные теории объясняют процессы взаимодействия веществ, описывают количественные соотношения между участниками химического превращения, указывают на возможность самопроизвольного протекания процесса, характеризуют скорость превращений, рассматривают состояние вещества и его превращения в растворах.

Знать фактический материал, относящийся к распространенности и формам нахождения химических элементов в природе, принципам переработки минерального сырья, методам получения, строению, физическим свойствам и реакционной способности, практическому использованию неорганических веществ.

Уметь анализировать свойства химических элементов на основании их положения в периодической системе, объяснять тенденции изменения свойств в ряду аналогичных веществ, на основании теории строения атома и химической связи раскрывать зависимость свойств веществ от их состава и строения, прогнозировать свойства веществ, предсказывать вероятные продукты химического превращения в конкретных условиях, связывать свойства вещества с возможными областями их применения.

Уметь пользоваться химической символикой, номенклатурой неорганических веществ, терминологией физической и неорганической химии.

Уметь составлять химические уравнения, расставлять стехиометрические коэффициенты, решать стандартные и комбинированные на их основе расчетные задачи, относящиеся к свойствам неорганических веществ и закономерностям их превращения.

Обладать навыками работы с учебной, справочной, монографической литературой, самостоятельно находить необходимые сведения по химии элементов и их соединений, уметь объединять, анализировать и систематизировать литературные данные.

Обладать практическими навыками лабораторного химического эксперимента, методами безопасной работы в химической лаборатории, реализовывать методики синтеза и очистки неорганических веществ, уметь формулировать заключение о природе вещества по совокупности полученных экспериментальных данных.

Иметь представление об электронном строении атомов, молекул, твердых тел, комплексных соединений, о методах исследования неорганических веществ.

Теоретической базой, необходимой для успешного освоения курса неорганической химии, являются:

1. Курсы химии, математики и физики, преподаваемые в средних общеобразовательных школах или в средних специальных учебных заведениях химического профиля.

2. Курсы строения вещества и кристаллохимии, преподаваемые параллельно с курсом неорганической химии на химическом факультете ННГУ.

3. Знание основных разделов физической химии, предусмотренных этой программой, изучение которых предшествует изложению основного материала неорганической химии.

Лекционный курс по неорганической химии и его программа состоят из четырех разделов. Раздел «Теоретические основы неорганической химии» объединяет учебный материал, посвященный химической терминологии, символике и номенклатуре, газовым законам и стехиометрии, основам химической термодинамики, теории растворов и фазовых равновесий, электрохимии, химической кинетике, учению о координационных соединениях. Усвоение этих понятий необходимо для того, чтобы последующее изучение фактического материала неорганической химии можно было вести на современной теоретической базе и заложить основы решения расчетных задач.

Разделы «Химия элементов – неметаллов» и «Химия элементов – металлов» раскрывают основное содержание курса – фактический материал неорганической химии, который систематизирован на основе периодического закона. Сведения о химических элементах излагаются в определенной последовательности: нахождение в природе, изотопный состав, положение в периодической системе, строение атома и валентные возможности, биологическая роль. Знания о соединениях химических элементов формируются в следующем логическом порядке: получение, строение, физические и химические свойства, применение, техника безопасной работы. Программой предусмотрена сравнительная характеристика свойств элементов и их соединений на основании положения в периодической системе (устойчивость степеней окисления, изменение кислотно-основных и окислительно-восстановительных свойств соединений), которая обобщает учебный материал по данному элементу или подгруппе.

В «Заключении» на основе периодического закона систематизированы общие свойства неметаллов и металлов, раскрываются некоторые вопросы геохимии и радиохимии, кратко освещаются методы исследования неорганических соединений. Изучение этих разделов способствует закреплению логических связей, сформированных в ходе рассмотрения фактического материала курса.

Лекционный курс по неорганической химии рассчитан на 140 часов в первом и втором учебных семестрах. Курс сопровождается проведением практических занятий (70 часов), на которых студенты знакомятся с приемами решения расчетных задач, и выполнением лабораторного практикума (140 часов). Изучение курса неорганической химии предполагает самостоятельную работу студента (150 часов), сдачу коллоквиумов и написание контрольных работ. В каждом из семестров студенты сдают зачет по лабораторному практикуму и экзамен по теоретическому курсу.

Теоретические основы неорганической химии

Основные понятия и законы химии. Атомно-молекулярное учение. Классическое и современное понятие атома. Строение атома. Атомное ядро, нуклоны, электроны, электронные оболочки. Атомный номер и массовое число. Изотопы. Химические элементы. Химическая связь. Ионная и ковалентная связь. Молекулы и формульные единицы.

Моль. Постоянная Авогадро. Количество вещества. Масса, объем и плотность вещества. Атомная и молярная массы. Молярный объем. Атомная единица массы. Относительная атомная и молекулярная массы.

Химический индивид и его признаки. Однородность вещества, понятия фазы и области гомогенности. Характерное строение. Молекулярное и кристаллохимическое строение. Основные понятия химии твердого тела. Элементарная ячейка. Трансляция. Дальний порядок. Представление о полиморфизме и изоморфизме. Определенность состава и закон постоянства состава. Закон кратных отношений. Химический индивид и чистое вещество. Сложное вещество и химическое соединение. Простое вещество и химический элемент. Аллотропия и полиморфизм.

Химическая символика. Номенклатура неорганических соединений.

Система и окружающая среда. Закрытые, открытые и изолированные системы. Гомогенные и гетерогенные системы. Состояние системы и параметры состояния. Стационарное и равновесное состояния системы. Процессы в системе и их классификация. Интенсивные и экстенсивные параметры состояния.

Понятие компонента. Способы выражения состава систем. Массовая и молярная доли. Молярная и моляльная концентрации. Титр. Растворимость. Закон сохранения массы и условие материального баланса. Молярная масса смеси.

Вариантность системы. Понятие независимого компонента. Правило фаз. Диаграмма состояния индивидуального вещества. Фигуративные точки. Фазовые переходы. Применение правила фаз для анализа диаграмм состояния.

Методы определения атомных и молекулярных масс. Экспериментальные методы определения молярных масс летучих веществ. Методы Реньо, Майера и Дюма. Расчет молярных масс из газовых законов. Определение молярных масс нелетучих веществ из коллигативных свойств растворов. Экспериментальное определение атомных масс. Методы, основанные на законе простых объемных отношений. Метод Канниццаро. Масс-спектрометрический метод. Оценка атомных масс из правила Дюлонга и Пти.

Газовые законы. Понятие идеального газа. Уравнение состояния идеального газа. Универсальная газовая постоянная и ее физический смысл. Условия измерения объема. Молярный объем идеального газа. Закон Авогадро. Плотность и относительная плотность газов. Уравнения Клапейрона, Бойля и Мариотта, Гей-Люссака, Шарля.

Смеси идеальных газов. Парциальное давление компонента. Закон парциальных давлений. Объемная доля компонента газовой смеси. Давление насыщенного пара. Математическое описание эвдиометра.

Стехиометрия. Химическая переменная и ее связь с другими экстенсивными величинами. Избыток и недостаток реагентов. Выход продукта реакции. Массовая доля элемента в соединении и установление формул веществ. Простейшая и истинная формулы. Установление состава смесей. Стехиометрия реакций с участием газообразных веществ. Закон простых объемных отношений.

Понятие эквивалента. Эквивалентное число реакции. Эквивалентное число вещества и его физический смысл. Закон эквивалентов. Эквивалентная масса и эквивалентный объем. Эквивалентная масса бинарного соединения. Эквивалентная (нормальная) концентрация. Стехиометрия окислительно-восстановительных реакций и электрохимических процессов. Законы Фарадея. Постоянная Фарадея.

Основы термодинамики. Предмет термодинамики и ее возможности. Энергия и ее виды. Механическая и внутренняя энергия. Теплота и работа – формы передачи энергии. Знаки элементарной теплоты и элементарной работы. Зависимость теплоты и работы от пути процесса. Условия передачи теплоты и совершения работы. Представление теплоты и работы через факторы интенсивности и емкости. Полезная работа и работа расширения. Химическое сродство. Энтропия. Энтропия и термодинамическая вероятность. Постулат Больцмана.

Первое начало термодинамики, его содержание и математическое выражение. Энтальпия. Тепловой эффект. Тепловой эффект при постоянном давлении и постоянном объеме. Теплоемкость. Теплоемкость при постоянном давлении и постоянном объеме. Зависимость энтальпии от температуры. Уравнение Кирхгофа. Удельная и молярная теплоемкости.

Второе начало термодинамики, его содержание. Фундаментальное уравнение термодинамики. Критерий самопроизвольного протекания процесса в изолированной и закрытой системах.

Функция Гиббса и ее дифференциал. Функция Гиббса как критерий самопроизвольного протекания реакции. Уравнение Гиббса и Гельмгольца и его виды. Физический смысл слагаемых в уравнении Гиббса и Гельмгольца.

Зависимость функции Гиббса от давления. Химический потенциал. Стандартный химический потенциал. Относительное парциальное давление. Стандартное состояние газа. Стандартные условия.

Химическая термодинамика. Применение термодинамики к химическим процессам. Изменение экстенсивного свойства в ходе реакции. Взаимосвязь изменений термодинамических функций в ходе реакции. Термохимические уравнения и их линейные преобразования.

Законы Лавуазье – Лапласа и Гесса. Расчет изменений термодинамических функций в ходе реакции их молярных значений этих функций и функций образования и сгорания. Энтальпии образования и энтальпии сгорания веществ. Следствия из закона Гесса. Применение значений энергетических эффектов фазовых превращений и средних энергий химической связи в термохимических расчетах. Экспериментальное определение тепловых эффектов калориметрическим методом. Условие теплового баланса.

Химическое сродство. Уравнение изотермы химической реакции. Термодинамическая константа химического равновесия. Уравнение изобары реакции. Зависимость константы равновесия от температуры. Выражение константы равновесия через парциальные давления и концентрации. Взаимосвязь констант химического равновесия. Предсказание направления процесса из уравнений изотермы и изобары реакции. Принцип динамического равновесия Ле Шателье. Расчет состава равновесной смеси из табличных значений термодинамических функций.

Термодинамика фазовых переходов. Зависимость давления пара от температуры. Энтропия фазового перехода. Зависимость энтропии вещества от температуры. Абсолютная энтропия вещества.

Растворы. Истинные и коллоидные растворы. Насыщенные и ненасыщенные растворы. Концентрированные и разбавленные растворы.

Растворение как физико-химический процесс. Растворимость веществ и ее температурная зависимость. Энтальпия растворения, энергия кристаллической решетки и энтальпия сольватации.

Коллигативные свойства растворов. Изотонический коэффициент, его связь со степенью диссоциации. Давление пара над раствором. Тоноскопический закон. Повышение точки кипения раствора. Эбулиоскопический закон. Понижение точки начала кристаллизации растворителя. Криоскопический закон. Осмос. Осмотическое давление. Применение коллигативных свойств для определения молярных масс веществ.

Химический потенциал растворенного вещества и растворителя. Несимметричная система стандартных состояний. Реальные газы и реальные растворы. Летучесть и активность. Объединенная система стандартных состояний.

Равновесие газ – жидкость. Закон Генри и его термодинамическое обоснование. Константа Генри. Коэффициент растворимости Оствальда. Коэффициент абсорбции Бунзена.

Равновесие жидкость – жидкость. Закон распределения Нернста и его термодинамическое обоснование. Коэффициент распределения. Исходный раствор, экстрагент, экстракт и рафинат. Коэффициент экстракции. Доля неэкстрагированного вещества. Однократная и многократная экстракция, их характеристические уравнения.

Равновесие твердое тело – жидкость. Диаграммы плавкости двухкомпонентных систем. Фигуративные точки и их значение. Диаграмма плавкости системы, образующей непрерывный ряд твердых растворов. Диаграммы плавкости эвтектического типа с полной взаимной нерастворимостью и ограниченной растворимостью компонентов в твердом состоянии. Диаграмма плавкости системы, компоненты которой образуют химическое соединение. Область гомогенности химического соединения. Применение правила фаз к анализу диаграмм плавкости. Расчет количеств равновесных фаз и частей системы. Кривые охлаждения как источник диаграмм плавкости.

Электролитическая диссоциация. Электролиты. Электролитическая диссоциация и ее термодинамическое описание. Константа и степень диссоциации. Сильные и слабые электролиты.

Основные идеи теорий кислот и оснований. Теория электролитической диссоциации Аррениуса, теория сольвосистем Франклина, протонная теория Бренстеда и Лоури, теория Усановича, теория жестких и мягких кислот и оснований Пирсона. Автопротолиз растворителя. Водородный показатель.

Кислотно-основное равновесие. Точный и приближенный расчет ионных равновесий. Ионные равновесия в растворах сильных кислот и оснований. Ионные равновесия в растворах слабых кислот и оснований. Закон разбавления Оствальда. Гидролиз. Способы усиления и подавления гидролиза. Ионные равновесия в растворах гидролизующихся солей. Константа и степень гидролиза. Буферные растворы. Ионные равновесия в буферных растворах.

Равновесие осаждения – растворения и его термодинамическое описание. Произведение растворимости. Условия выпадения и растворения осадка.

Равновесие комплексообразования. Комплексообразователь и лиганды. Координационное число. Общая и ступенчатые константы образования. Константа нестойкости.

Применение значений констант диссоциации, произведения растворимости и констант комплексообразования для предсказания возможности протекания ионных реакций.

Окислительно-восстановительные реакции. Окисление и восстановление. Окислитель и восстановитель. Важнейшие окислители и восстановители, продукты их химического превращения в различных средах. Расстановка коэффициентов в уравнениях реакций методами электронного баланса и полуреакций.

Электрохимия. Проводники первого и второго рода. Понятие электрода и электродной реакции. Классификация электродов. Электродный потенциал. Зависимость электродного потенциала от концентрации. Уравнение Нернста.

Электрохимическая ячейка. Гальванический элемент и его термодинамическое описание. ЭДС гальванического элемента. Определение термодинамических функций по электрохимическим данным. Электролиз. Напряжение разложения. Составление уравнений процессов электролиза. Практическое применение электролиза.

Химическая кинетика и катализ. Скорость химической реакции. Механизм реакции. Простые и сложные реакции.

Зависимость скорости реакции от концентрации реагентов. Закон действующих масс. Кинетическое уравнение. Константа скорости химической реакции. Порядок и молекулярность реакций. Кинетические кривые и их уравнения.

Зависимость скорости реакции от температуры. Уравнения Вант-Гоффа и Аррениуса. Температурный коэффициент скорости реакции. Энергия активации и ее физический смысл. Энергетическая диаграмма реакции. Предэкспоненциальный множитель. Частотный и пространственный факторы.

Катализ и катализаторы. Гомогенный и гетерогенный катализ. Ингибиторы. Промоторы. Примеры каталитических реакций.

Комплексные соединения. Основные понятия и определения. Комплексное соединение. Внешняя сфера. Внутренняя сфера. Комплексообразователь (центральный атом). Лиганды (адденды). Координационное число. Дентатность. Мостиковые лиганды. Кластеры.

Основные положения координационной теории А.Вернера. Главная и побочная валентности.

Классификация комплексных соединений. Классификация по заряду внутренней сферы. Нейтральные, катионные и анионные комплексы. Классификация по природе лиганда. Аквакомплексы, аммиакаты, гидроксикомплексы, ацидокомпексы, карбонилы, смешаннолигандные комплексы. Классификация по числу центральных атомов во внутренней сфере. Одноядерные и многоядерные комплексы. Особые группы комплексных соединений. Хелаты, двойные соли, изополисоединения, гетерополисоединения.

Изомерия комплексных соединений. Структурная изомерия. Междусферная изомерия (ионизационная, гидратная, молекулярная (сольватная) изомерия). Лигандная изомерия (изомерия лиганда, связевая (солевая) изомерия). Координационная изомерия (метамерия и полимерия). Пространственная изомерия (геометрическая и оптическая изомерия).

Номенклатура комплексных соединений. Тривиальная и систематическая номенклатура. Правила формирования названий катионных, нейтральных и анионных комплексов. Указание числа лигандов, природы лиганда и степени окисления центрального атома. Указание числа сложных лигандов. Указание на мостиковые лиганды и лиганды, координированные несколькими атомами. Составление систематических названий комплексных соединений.

Термодинамическая и кинетическая стабильность комплексов. Устойчивые и неустойчивые комплексы. Инертные и лабильные комплексы. Обсуждение термодинамической стабильности комплексов с позиций теории жестких и мягких кислот и оснований.

Природа химической связи в комплексных соединениях. Основные идеи метода валентных связей, теории кристаллического поля, метода молекулярных орбиталей и теории поля лигандов. Методологическое значение теории строения комплексных соединений.

Предсказание строения и свойств комплексных соединений с позиций метода валентных связей. Определение электронной конфигурации центрального атома. Внешнеорбитальные и внутриорбитальные комплексы. Высокоспиноовые и низкоспиновые комплексы. Роль природы лиганда в образовании внешнеорбитальных и внутриорбитальных комплексов. Предсказание кинетической устойчивости комплексов. Отнесение комплексного соединения к внешнеорбитальным и внутриорбитальным комплексам. Предсказание координационного числа, типа гибридизации и геометрической формы комплекса и его магнитных свойств.

Предсказание строения и свойств комплексных соединений с позиций теории кристаллического поля. Предсказание относительного расположения орбиталей центрального атома в поле лигандов октаэдрической, тетраэдрической и плоскоквадратной симметрии. Параметр расщепления. Спектрохимический ряд. Оценка величины расщепления d- подуровня центрального атома. Заполнение расщепленного уровня электронами в случае лигандов сильного и слабого поля. Предсказание окраски комплексного соединения из значения параметра расщепления. Предсказание поведения комплекса в магнитном поле. Энергия стабилизации кристаллическим полем (ЭСКП). Расчет ЭСКП для октаэдрических и тетраэдрических комплексов, образованных лигандами сильного и слабого поля. Предсказание кинетической устойчивости комплексов с позиций теории кристаллического поля.

Хелатные комплексы. Хелатный эффект. Правило циклов. Примеры хелатообразующих лигандов. Внутрикомплексные соединения.

π-Комплексы. Образование координационной связи в π-комплексах. Примеры π-комплексов. π-Дативное взаимодействие на примере ферроцена и бис-(бензол)хрома.

Химические реакции с участием комплексных соединений. Реакции перемещения лигандов между внешней и внутренней сферами. Диссоциация комплексных соединений по внешней и внутренней сферам. Ступенчатые и общие (полные) константы образования. Константа нестойкости. Расчет ионных равновесий в растворах комплексных соединений. Реакции замещения лиганда. Диссоциативный и ассоциативный механизмы замещения. Представление процессов диссоциации комплекса как процессов замещения лигандов молекулами воды. Стереохимия процессов замещения в квадратных и октаэдрических комплексах. Явление транс-влияния. Ряд транс-влияния. Предсказание строения продуктов замещения с позиций представлений о транс-влиянии. Перераспределение лигандов и образование смешанных комплексов. Внутримолекулярные превращения комплексного соединения. Химические превращения координированных лигандов. Протонирование и депротонирование лиганда. Гидроксоляция и ее последствия. Преодоление гидроксоляции в кислых и щелочных средах. Изомеризация лигандов. Реакции присоединения, внедрения и конденсации с органическим координированным лигандом. Металлокомплексный катализ. Окислительно-восстановительные превращения центрального атома. Влияние природы лиганда на значения окислительно-восстановительных потенциалов превращений центрального атома.

Значение комплексных соединений в природе, технологии, сельском хозяйстве, медицине.

Неорганическая химия - часть общей химии. Она занимается изучением свойств и поведения неорганических соединений - их структуры и способности реагировать с другими веществами. Данное направление исследует все вещества, за исключением тех, которые построены из углеродных цепочек (последние являются предметом изучения органической химии).

Описание

Химия - это комплексная наука. Ее деление на категории чисто условно. Например, неорганическую и органическую химию связывают соединения, называемые бионеорганическими. К ним относятся гемоглобин, хлорофилл, витамин B 12 и многие ферменты.

Очень часто при изучении веществ или процессов приходится учитывать различные взаимосвязи с прочими науками. Общая и неорганическая химия охватывает простые и число которых приближается к 400 000. Изучение их свойств часто включает в себя широкий спектр методов физической химии, поскольку они могут сочетать свойства, характерные для такой науки, как физика. На качества веществ влияют проводимость, магнитная и оптическая активность, воздействие катализаторов и прочие «физические» факторы.

Как правило, неорганические соединения классифицируются в соответствии с их функцией:

  • кислоты;
  • основания;
  • оксиды;
  • соли.

Оксиды часто делятся на металлы (основные оксиды или основные ангидриды) и неметаллические оксиды (кислотные оксиды или ангидриды кислот).

Зарождение

История неорганической химии делится на несколько периодов. На первоначальном этапе происходило накопление знаний посредством случайных наблюдений. С древних времен предпринимались попытки трансформировать неблагородные металлы в драгоценные. Алхимическая идея пропагандировалась еще Аристотелем через его учение об конвертируемости элементов.

В первой половине пятнадцатого века свирепствовали эпидемии. Особенно население страдало от оспы и чумы. Эскулапы предполагали, что заболевания вызваны определенными веществами, и борьба с ними должна осуществляться с помощью других веществ. Это привело к началу так называемого медико-химического периода. В то время химия стала самостоятельной наукой.

Становление новой науки

Во время Возрождения химия из чисто практической области исследования стала «обрастать» теоретическими понятиями. Ученые пытались объяснить глубинные процессы, происходящие с веществами. В 1661 году Роберт Бойл вводит понятие «химический элемент». В 1675 году Николас Леммер отделяет химические элементы минералов от растений и животных, тем самым обусловив изучение химией неорганических соединений отдельно от органических.

Позже химики пытались объяснить явление горения. Немецкий ученый Георг Сталь создал теорию флогистонов, согласно которой сгораемое тело отторгает негравитационную частицу флогистона. В 1756 году Михаил Ломоносов экспериментально доказал, что горение некоторых металлов связано с частицами воздуха (кислорода). Антуан Лавуазье также опроверг теорию флогистонов, став родоначальником современной теории горения. Им же введено понятие «соединение химических элементов».

Развитие

Следующий период начинается с работ и попыток объяснить химические законы посредством взаимодействия веществ на атомарном (микроскопическом) уровне. Первый химический конгресс в Карлсруэ в 1860 году дал определения понятий атома, валентности, эквивалента и молекулы. Благодаря открытию периодического закона и созданию периодической системы Дмитрий Менделеев доказал, что атомно-молекулярная теория связана не только с химическими законами, но и с физическими свойствами элементов.

Следующий этап в развитии неорганической химии связан с обнаружением радиоактивного распада в 1876 году и выяснением конструкции атома в 1913-м. Исследование Альбрехта Кесселя и Гильберта Льюиса в 1916 году решает проблему природы химических связей. Основываясь на теории гетерогенного равновесия Уилларда Гиббса и Хенрика Росзеба, Николай Курнаков в 1913 году создал один из основных методов современной неорганической химии - физико-химический анализ.

Основы неорганической химии

Неорганические соединения в природе встречаются в виде минералов. Почва может содержать сульфид железа, такой как пирит, или сульфат кальция в виде гипса. Неорганические соединения также встречаются как биомолекулы. Они синтезируются для использования в качестве катализаторов или реагентов. Первым важным искусственным неорганическим соединением является нитрат аммония, используемый для удобрения почвы.

Соли

Многие неорганические соединения представляют собой ионные соединения, состоящие из катионов и анионов. Это так называемые соли, являющиеся объектом исследований неорганической химии. Примерами ионных соединений являются:

  • Хлорид магния (MgCl 2), в состав которого входят катионы Mg 2+ и анионы Cl - .
  • Оксид натрия (Na 2 O), который состоит из катионов Na + и анионов O 2- .

В каждой соли пропорции ионов таковы, что электрические заряды равновесны, то есть соединение в целом является электрически нейтральным. Ионы описываются степенью окисления и легкостью образования, которая следует из потенциала ионизации (катионы) или электронного сродства (анионы) элементов, из которых они образуются.

К неорганическим солям относятся оксиды, карбонаты, сульфаты и галогениды. Многие соединения характеризуются высокой температурой плавления. Неорганические соли обычно представляют собой твердые кристаллические образования. Другой важной особенностью является их растворимость в воде и легкость кристаллизации. Некоторые соли (например, NaCl) хорошо растворимы в воде, в то время как другие (например, SiO2) почти не растворяются.

Металлы и сплавы

Металлы, такие как железо, медь, бронза, латунь, алюминий, представляют собой группу химических элементов в нижней левой части периодической таблицы. К этой группе относятся 96 элементов, которые характеризуются высокой теплопроводностью и электропроводностью. Они широко используются в металлургии. Металлы могут быть условно разделены на черные и цветные, тяжелые и легкие. Кстати, наиболее используемым элементом является железо, оно занимает 95 % мирового производства среди всех видов металлов.

Сплавы представляют собой сложные вещества, получаемые путем плавления и смешивания двух или более металлов в жидком состоянии. Они состоят из основания (доминирующих элементов в процентном соотношении: железа, меди, алюминия и т. д.) с небольшими добавками легирующих и модифицирующих компонентов.

Человечеством применяется около 5000 типов сплавов. Они являются основными материалами в строительстве и промышленности. Кстати, существуют также сплавы между металлами и неметаллами.

Классификация

В таблице неорганической химии металлы распределены по нескольким группам:

  • 6 элементов находятся в щелочной группе (литий, калий, рубидий, натрий, франций, цезий);
  • 4 - в щелочноземельной (радий, барий, стронций, кальций);
  • 40 - в переходной (титан, золото, вольфрам, медь, марганец, скандий, железо и др.);
  • 15 - лантаноиды (лантан, церий, эрбий и др.);
  • 15 - актиноиды (уран, актиний, торий, фермий и др.);
  • 7 - полуметаллы (мышьяк, бор, сурьма, германий и др.);
  • 7 - легкие металлы (алюминий, олово, висмут, свинец и др.).

Неметаллы

Неметаллы могут быть как химическими элементами, так и химическими соединениями. В свободном состоянии они образуют простые вещества с неметаллическими свойствами. В неорганической химии различают 22 элемента. Это водород, бор, углерод, азот, кислород, фтор, кремний, фосфор, сера, хлор, мышьяк, селен и др.

Наиболее типичными неметаллами являются галогены. В реакции с металлами они образуют которых в основном ионная, например KCl или CaO. При взаимодействии друг с другом неметаллы могут образовывать ковалентно-связанные соединения (Cl3N, ClF, CS2 и т. д.).

Основания и кислоты

Основания - сложные вещества, наиболее важными из которых являются водорастворимые гидроксиды. При растворении они диссоциируют с катионами металлов и анионами гидроксидов, а их рН больше 7. Основания можно рассматривать как химически противоположные кислотам, потому что водо-диссоциирующие кислоты увеличивают концентрацию ионов водорода (H3O+), пока основание не уменьшится.

Кислоты - это вещества, которые участвуют в химических реакциях с основаниями, забирая у них электроны. Большинство кислот, имеющих практическое значение, являются водорастворимыми. При растворении они диссоциируют из катионов водорода (Н +) и кислых анионов, а их рН меньше 7.

Фундаментальные труды, связанные с изучением строения, свойств и способности реагировать химические элементы и их соединения, были объединены в раздел неорганической химии. Сегодня общее число известных неорганических веществ равно 400 тысячам.

Виды химических соединений

Ионы и нейтральные молекулы, образующиеся в процессе присоединения к комплексообразующим частицам нейтральных лигандов, которыми именуются другие ионы или молекулы, называются комплексные соединения. Они могут иметь внешнюю сферу, диссоциирующую на катион комплексного малодиссоциирующего типа, или же нерастворимые водой соединения без внешней сферы. Также стоит отметить , к которым относится большая часть соединений, исключающих наличие углерода.

Диссоциация подразумевает под собой распад химических соединений на отдельные самостоятельные элементы. Так, к примеру, гидроксид аммония и щелочные металлы, именуемые еще как щелочи, относят к себе легкорастворимые основания в воде.

Следующий класс химических соединений металлов и некоторых неметаллов представляют собой сульфиды.

Химические элементы 17-й группы, имею хорошую реакцию со всеми веществами простого типа, за исключением немногих неметаллов. Они являются энергичными окислителями, это служит причиной, почему данные химические элементы встречаются в природе только в виде соединений.

Важнейший биогенный элемент с электронной структурой, обеспечивающей мгновенное разрушение и образование связей химического вида с биологической молекулой, образует соединения фосфора. Если они имеют степень окисления 5+, значит, соединение преобразуется как фосфорная кислота.

Грауберова или горькая соль, колчедан и цинковая обманка — важнейшие соединения серы, которые в природе могут встречаться как в чистом виде, так и входить в состав нефти, живых организмов как аминокислоты. Серу из горных пород добывают с помощью водяного пара, еще доступно ее получение в лабораторных условиях путем окислительно-восстановительной реакции.

Свойства химических реакций и процессов

Простое вещество, которое состоит из атомов единственного элемента, может образовывать некоторое число химических связей с частицами остальных элементов. Данный процесс называется , он может менять молекулярное строение вещества, с которым тесно связана такая электроизоляционная черта, как проводимость материала. Наиболее известным методом нахождения коэффициента в уравнениях реакций окислительно-восстановительного типа выступаетэлектронный баланс.Геометрический образ, который вводится для анализа кристаллов, имеющих сходство с канвой, называется кристаллическая решетка.

Изменения количества и качества реагирующего вещества за определенный промежуток времени понимается какскорость химической реакции,чья величина всегда положительная. Химический процесс, способствующий выделению через электроды частей растворных веществ, является конечным результатом электродной вторичной реакции, которая возникает во время прохождения электричества, образуя расплавов. Вещество, проводящее электричество в результате ионной диссоциации или передвижении частиц по кристаллической решетке, служит примером раствора электролитов.

Рассматривая химические свойства оксидов,стоит указать, что они могут взаимодействовать с водой, с дальнейшим образованием щелочи или основания, с кислотами, образовывая воду или солевой раствор, а также с кислотными оксидами.

УЧЕБНОЕ ПОСОБИЕ

По дисциплине «Общая и неорганическая химия»

Сборник лекций по общей и неорганической химии

Общая и неорганическая химия: учебное пособие/ автор Е.Н.Мозжухина;

ГБПОУ «Курганский базовый медицинский колледж». - Курган: КБМК, 2014. - 340 с.

Печатается по решению редакционно-издательского совета ГАОУ ДПО «Институт развития образования и социальных технологий»

Рецензент: Н.Е. Горшкова- кандидат биологических наук, заместитель директора по ИМР ГБПОУ «Курганский базовый медицинский колледж»

Введение.
РАЗДЕЛ 1. Теоретические основы химии 8-157
1.1. Периодический закон и периодическая система элементом Д.И. Менделеева. Теория строения веществ.
1.2.Электронное строение атомов элементов.
1.3. Виды химической связи.
1..4 Строение веществ неорганической природы
1 ..5 Классы неорганических соединений.
1.5.1. Классификация, состав, номенклатура оксидов, кислот, оснований Способы получения и их химические свойства.
1.5.2 Классификация, состав, номенклатура солей. Способы получения и их химические свойства
1.5.3. Амфотерность. Химические свойства амфотерных йксидов и гидроксидов. Генетическая связь между классами неорганических соединений.
1..6 Комплексные соединения.
1..7 Растворы.
1.8. Теория электролитической диссоциации.
1.8.1. Электролитическая диссоциация. Основные положения. ТЭД. Механизм диссоциации.
1.8.2. Ионные реакции обмена. Гидролиз солей.
1.9. Химические реакции.
1.9.1. Классификация химический реакций. Химическое равновесие и смещение.
1.9.2. Окислительно-восстановитьельные реакции. Их электронная сущность. Классификация и составление уравнений ОВР.
1.9.3. Важнейшие окислители и восстановители. ОВР с участием дихромата, перманганата калия и разбавленных кислот.
1.9.4 Методы расстановки коэффициентов в ОВР
РАЗДЕЛ 2. Химия элементов и их соединений.
2.1. Р -элементы.
2.1.1. Общая характеристика элементов VII группы периодической системы. Галогены. Хлор, его физические и химические свойства.
2.1.2. Галогениды. Биологическая роль галогенов.
2.1.3. Халькогены. Общая характеристика элементов VI группы ПС Д.И. Менделеева. Соединения кислорода.
2.1.4. Важнейшие соединения серы.
2.1.5. Главная подгруппа V группы. Общая характеристика. Строение атома, физические и химические свойства азота. Важнейшие соединения азота.
2.1.6. Строение атома фосфора, его физические и химические свойства. Аллотропия. Важнейшие соединения фосфора.
2.1.7. Общая характеристика элементов IV группы главной подгруппы периодической системы Д.И. Менделеева. Углерод и кремний.
2.1.8. Главная подгруппа III группы периодической системы Д.И. Менделеева. Бор. Алюминий.
2.2. s - элементы.
2.2.1. Общая характеристика металлов II группы главной подгруппы периодической системы Д.И. Менделеева. Щелочно­земельные металлы.
2.2.2. Общая характеристика элементов I группы главной подгруппы периодический системы Д.И. Менделеева. Щелочные металлы.
2.3. d-элементы.
2.3.1. Побочная подгруппа I группы.
2.3.2.. Побочная подгруппа II группы.
2.3.3. Побочная подгруппа VI группы
2.3.4. Побочная подгруппа VII группы
2.3.5. Побочная подгруппа VIII группы

Пояснительная записка

На современном этапе развития общества первостепенной задачей является забота о здоровье человека. Лечение многих заболеваний стало возможным благодаря достижениям химии в области создания новых веществ и материалов.

Не имея глубоких и разносторонних знаний в области химии, не зная значения положительного или отрицательного влияния химических факторов на окружающую среду, не сможешь быть грамотным медицинским работником. Студенты медицинского колледжа должны иметь необходимый минимум знаний по химии.

Данный курс лекционного материала предназначен для студентов, изучающих основы общей и неорганической химии.

Целью данного курса является изучение положений неорганической химии, изложенных на современном уровне знаний; расширение объема знаний с учетом профессиональной направленности. Важным направлением является создание прочной базы, на которой строится преподавание других химических специальных дисциплин (органической и аналитической химии, фармакологии, технологии лекарств).

Предлагаемый материал предусматривает профессиональную ориентацию студентов на связь теоретической неорганической химии со специальными и медицинскими дисциплинами.

Основные задачи учебного курса данной дисциплины заключается в усвоении фундаментальных основ общей химии; в усвоении студентами содержания неорганической химии как науки, объясняющей связь свойств неорганических соединений с их строением; в формировании представлений о неорганической химии как фундаментальной дисциплине, на которой базируются профессиональные знания.

Курс лекций по дисциплине «Общая и неорганическая химия» построен в соответствии с требованиями Государственного образовательного стандарта (ФГОС-4) к минимуму уровня подготовки выпускников по специальности 060301 «Фармация» и разработан на основе учебного плана данной специальности.

Курс лекций включает в себя два раздела;

1. Теоретические основы химии.

2. Химия элементов и их соединений: (р- элементы, s- элементы, d-элементы).

Изложение учебного материала представлено в развитии: от наиболее простых понятий к сложным, целостным, обобщающим.

В разделе «Теоретические основы химии» освещены следующие вопросы:

1. Периодический закон и Периодическая система химических элементов Д.И. Менделеева и теория строения веществ.

2. Классы неорганических веществ, взаимосвязь между всеми классами неорганических веществ.

3. Комплексные соединения, их использование в качественном анализе.

4. Растворы.

5. Теория электролитической диссоциации.

6. Химические реакции.

При изучении раздела «Химия элементов и их соединений» рассматриваются вопросы:

1. Характеристика группы и подгруппы, в которой находится данный элемент.

2. Характеристика элемента, исходя из его положения в периодической системе, с точки зрения теории строения атома.

3. Физические свойства и распространение в природе.

4. Способы получения.

5. Химические свойства.

6. Важнейшие соединения.

7. Биологическая роль элемента и его применение в медицине.

Особое внимание уделяется лекарственным средствам неорганической природы.

В результате изучения данной дисциплины студент должен знать:

1. Периодический закон и характеристику элементов периодической системы Д.И. Менделеева.

2. Основы теории химических процессов.

3. Строение и реакционную способность веществ неорганической природы.

4. Классификацию и номенклатуру неорганических веществ.

5. Получение и свойства неорганических веществ.

6. Применение в медицине.

1. Классифицировать неорганические соединения.

2. Составлять названия соединений.

3. Устанавливать генетическую связь между неорганическими соединениями.

4. С помощью химических реакций доказывать химические свойства веществ неорганической природы, в том числе лекарственных.

Лекция №1

Тема: Введение.

1. Предмет и задачи химии

2. Методы общей и неорганической химии

3. Фундаментальные теории и законы химии:

а) атомно-молекулярная теория.

б) закон сохранения массы и энергии;

в) периодический закон;

г) теория химического строения.


неорганической химии.

1. Предмет и задачи химии

Современная химия является одной из естественных наук и представляет собой систему отдельных дисциплин: общей и неорганической химии, аналитической химии, органической химии, физической и коллоидной химии, геохимии, космохимии и т.п.

Химия - наука, изучающая процессы превращения веществ, сопровождающиеся изменением состава и структуры, а также взаимные переходы между этими процессами и другими формами движения материи.

Таким образом, главным объектом химии как науки является вещества и их превращения.

На современном этапе развития нашего общества забота о здоровье человека является задачей первостепенной важности. Лечение многих заболеваний стало возможным благодаря достижениям химии в области создания новых веществ и материалов: лекарственных средств, заменителей крови, полимеров и полимерных материалов.

Не имея глубоких и разносторонних знаний в области химии, не понимая значения положительного или отрицательного влияния различных химических факторов на здоровье человека и окружающую его среду, нельзя стать грамотным медицинским работником.

Общая химия. Неорганическая химия.

Неорганическая химия - это наука элементов периодической системы и образованных ими простых и сложных веществ.

Неорганическая химия неотделима от общей химии. Исторически при изучении химического взаимодействия элементов друг с другом были сформулированы основные законы химии, общие закономерности протекания химических реакций, теория химической связи, учение о растворах и многое другое, что составляет предмет общей химии.

Таким образом, общая химия изучает теоретические представления и концепции, составляющие фундамент всей системы химических знаний.

Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает свое «второе рождение» в результате широкого привлечения квантово-химических методов, зонной модели энергетического спектра электронов, открытия валентно-химических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она успешно решает главную задачу - создание новых неорганических веществ с заданными свойствами.

2. Методы общей и неорганической химии.

Из экспериментальных методов химии важнейшим является метод химических реакций. Химическая реакция - превращение одних веществ в другие путем изменения состава и химического строения. Химические реакции дают возможность исследовать химические свойства веществ. По химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на использовании физических явлений.

Также на основе химических реакций осуществляется и неорганический синтез, который за последнее время достиг большого успеха, особенно в получении особо чистых соединений в виде монокристаллов. Этому способствовали применение высоких температур и давлений, глубокого вакуума, внедрение бесконтейнерных способов очистки и т.п.

При проведении химических реакций, а также при выделении веществ из смеси в чистом виде важную роль играют препаративные методы: осаждение, кристаллизация, фильтрование, сублимация, перегонка и т.п. В настоящее время многие из этих классических препаративных методов получили дальнейшее развитие и являются ведущими в технологии получения особо чистых веществ и монокристаллов. Это методы направленной кристаллизации, зонной перекристаллизации, вакуумной сублимации, фракционной перегонки. Одна из особенностей современной неорганической химии это синтез и исследование особо чистых веществ на монокристаллах.

Методы физико-химического анализа широко применяются при изучении растворов и сплавов, когда образующиеся в них соединения трудно или практически невозможно выделить в индивидуальном состоянии. Тогда исследуют физические свойства систем в зависимости от изменения состава. В результате строят диаграмму состав - свойства, анализ который позволяет делать заключение о характере химического взаимодействия компонентов, образование соединений и их свойствах.

Для познания сущности явления одних экспериментальных методов недостаточно, поэтому Ломоносов говорил, что истинный химик должен быть теоретиком. Только через мышление, научную абстракцию и обобщение познаются законы природы, создаются гипотезы и теории.

Теоретическое осмысление опытного материала и создание стройной системы химических знаний в современной общей и неорганической химии базируется на: 1) квантово-механической теории строения атомов и периодической системе элементов Д.И. Менделеева; 2) квантово-химической теории химического строения и учении о зависимости свойств вещества от «его химического строения; 3) учении о химическом равновесии, основанной на понятиях химической термодинамики.

3. Фундаментальные теории и законы химии.

К числу основополагающих обобщений химии и естествознания относятся атомно-молекулярная теория, закон сохранения массы и энергии,

Периодическая система и теория химического строения.

а) Атомно-молекулярная теория.

Создатель атомно-молекулярного изучения и первооткрыватель закона сохранения массы веществ М.В. Ломоносов по праву считается основателем научной химии. Ломоносов четко различал две ступени в строении вещества: элементы (в нашем понимании - атомы) и корпускулы (молекулы). Согласно Ломоносову, молекулы простых веществ состоят из одинаковых атомов, а молекулы сложных веществ - из разных атомов. Всеобщее признание атомно-молекулярная теория получила в начале XIX века после утверждения в химии атомистики Дальтона. С тех пор главным объектом исследования химии стали молекулы.

б) Закон сохранения массы и энергии.

В 1760 г. Ломоносов сформулировал единый закон массы и энергии. Но до начала XX в. эти законы рассматривались независимо друг от друга. Химия в основном имела дело с законом сохранения массы вещества (масса веществ, вступивших в химическую реакцию, равна массе веществ, образующихся в результате реакции).

Например: 2КСlO 3 = 2 КСl + 3O 2

Слева: 2 атома калия Справа: 2 атома калия

2 атома хлора 2 атома хлора

6 атомов кислорода 6 атомов кислорода

Физика имела дело с законом сохранения энергии. В 1905 г. основоположник современной физики А. Эйнштейн показал, что между массой и энергией существует взаимосвязь, выражаемая уравнением Е = mс 2 , где Е - энергия, m - масса; с - скорость света в вакууме.

в) Периодический закон.

Важнейшая задача неорганической химии заключается в изучении свойств элементов, в выявлении общих закономерностей их химического взаимодействия между собой. Самое крупное научное обобщение в решении этой проблемы сделал Д.И. Менделеев, открывший Периодический закон и его графическое выражение - Периодическую систему. Только вследствие этого открытия стало возможным химическое предвидение, предсказание новых фактов. Поэтому Менделеев является основателем современной химии.

Периодический закон Менделеева является основой естественной
систематики химических элементов. Химический элемент - совокупность
атомов с одинаковым зарядом ядра. Закономерности изменения свойств
химических элементов определяются Периодическим законом. Учение о
строении атомов объяснило физический смысл Периодического закона.
Оказалось, что периодичность изменения свойств элементов и их соединений
зависит от периодически повторяющейся сходной структуры электронной
оболочки их атомов. Химические и некоторые физические свойства зависят от
структуры электронной оболочки, особенно ее наружных слоев. Поэтому
Периодический закон является научной основой изучения важнейших свойств элементов и их соединений: кислотно-основных, окислительно-восстановительных, каталитических, комплексообразовательных, полупроводниковых, металлохимических, кристаллохимических, радиохимических и т.п.

Периодическая система также сыграла колоссальную роль в учении о естественной и искусственной радиоактивности, освобождении внутриядерной энергии.

Периодический закон и Периодическая система беспрерывно развиваются и уточняются. Доказательством тому служит современная формулировка Периодического закона: свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины заряда ядра их атомов. Таким образом, положительный заряд ядра, а не атомная масса, оказался более точным аргументом, от которого зависят свойства элементов и их соединений.

г) Теория химического строения.

Фундаментальная задача химии - изучение зависимости между химическим строением вещества и его свойствами. Свойства вещества являются функцией его химического строения. До A.M. Бутлерова считали, что свойства вещества определяются его качественным и количественным составом. Он впервые сформулировал основное положение своей теории химического строения. Таким образом: химическая натура сложной частицы определяется натурой элементарных составных частиц, количеством их и химическим строением. В переводе на современный язык это означает, что свойства молекулы определяются природой составляющих ее атомов, их количеством и химическим строением молекулы. Первоначально теория химического строения относилась к химическим соединениям, имеющим молекулярную структуру. В настоящее время теория, созданная Бутлеровым, считается общехимической теорией строения химических соединений и зависимости свойств их от химического строения. Эта теория - продолжение и развитие атомно-молекулярного учения Ломоносова.

4. Роль отечественных и зарубежных ученых в развитии общей и

неорганической химии.

п/п Ученые Даты жизни Важнейшие работы и открытия в области химии
1. Авогадро Амедо (Италия) | 1776-1856 Закон Авогадро 1
2. Аррениус Сванте (Швеция) 1859-1927 Теория электролитической диссоциации
3. Бекетов Н.Н. (Россия) 1827-1911 Ряд активности металлов. Основы алюмотермии.
4. Бертолле Клод Луи (Франция) 1748-1822 Условия течения химических реакций. Исследование газов. Бертолетова соль.
5. Берцелиус Иене Якоб (Швеция) 1779-1848 Определение атомных весов элементов. Введение буквенных обозначений для химических элементов.
6. Бойль Роберт (Англия) 1627-1691 Установление понятия о химическом элементе. Зависимость объемов газов от давления.
7. Бор Нильс (Дания) 1887-1962 Теория строения атома. 1
8. Вант-Гофф Якоб Гендрик (Голландия) 1852-1911 Исследование растворов; один из основателей физической химии и стереохимии.
9. Гей-Люссак Жозеф (Франция) 1778-1850 Газовые законы Гей-Люссака. Исследование бескислородных кислот; технология серной кислоты.
10. Гесс Герман Иванов (Россия) 1802-1850 Открытие основного закона термохимии. Разработка русской химической номенклатуры. Анализ минералов.
11. Дальтон Джон (Англия) 1766-1844 Закон кратных отношений. Введение химических знаков и формул. Обоснование атомной теории.
12. Кюри-Склодовская Мария (Франция, родина Польша) 1867-1934 Открытие полония и радия; изучение свойств радиоактивных веществ. Выделение металлического радия.
13. Лавуазье Антуан Лоран (Франция) 1743-1794 Основание научной химии установление кислородной теории горения, природы воды. Создание учебника химии на основе новых взглядов.
14. Ле Шателье Лун Анри (Франция) 1850-1936 Общий закон смещения равновесия в зависимости от внешних условий (принцип Ле-Шателье)
15. Ломоносов Михаил Васильевич 1741-1765 Закон сохранения массы веществ.
Применение количественных методов в химии; развитие основных положений кинетической теории газов. Основание первой русской химической лаборатории. Составление руководства по металлургии и горному делу. Создание мозаичного производства.
16. Менделеев Дмитрий Иванович (Россия) 1834-1907 Периодический закон и периодическая система химических элементов (1869 г.). Гидратная теория растворов. «Основы химии». Исследование газов, открытие критической температуры и др.
17. Пристли Джозеф (Англия) 1733-1804 Открытие и исследование кислорода, хлористого водорода, аммиака, окиси углерода, окиси азота и др. газов.
18. Резерфорд Эрнест (Англия) 1871-1937 Планетарная теория строения атома. Доказательство самопроизвольного радиоактивного распада с выделением альфа-, бета-, гамма -лучей.
19. Якоби Борис Семенович (Россия) 1801-1874 Открытие гальванопластики и внедрение ее в практику типографского и монетного дела.
20. И другие

Вопросы для самоконтроля:

1. Основные задачи общей и неорганической химии.

2. Методы химических реакций.

3. Препаративные методы.

4. Методы физико-химического анализа.

5. Основные законы.

6. Основные теории.

Лекция № 2

Тема: «Строение атома и периодический закон Д.И. Менделеева»

План

1. Строение атома и изотопы.

2. Квантовые числа. Принцип Паули.

3. Периодическая система химических элементов в свете теории строения атома.

4. Зависимость свойств элементов от строения их атомов.

Периодический закон Д.И. Менделеева вскрыл взаимную связь химических элементов. Изучение периодического закона поставило ряд вопросов:

1. В чем причина сходства и различия элементов?

2. Чем объясняется периодическое изменение свойств элементов?

3. Почему соседние элементы одного периода значительно отличаются по свойствам, хотя их атомные массы отличаются на небольшую величину, и наоборот, в подгруппах разница в атомных массах соседних элементов большая, а свойства сходные?

4. Почему расположение элементов в порядке возрастания атомных масс нарушается элементами аргон и калий; кобальт и никель; теллур и йод?

Большинство ученых признавали реальное существование атомов, но придерживались метафизических взглядов (атом самая мельчайшая неделимая частица вещества).

В конце XIX было установлено сложное строение атома и возможность превращения при определенных условиях одних атомов в другие. Первыми обнаруженными в атоме частицами были электроны.

Было известно, что при сильном накаливании и при освещении УФЛ с поверхности металлов отрицательное электронных и металлы заряжаются положительно. В выяснении природы этого электричества большое значение имели работы русского ученого А.Г. Столетова и английского ученого У. Крукса. В 1879 г. Крукс исследовал явления электронных лучей в магнитном и электрическом полях под действием электрического тока высокого напряжения. Свойство катодных лучей приводить в движение тела и испытывать отклонения в магнитном и электрическом полях дало возможность сделать вывод, что это материальные частицы, несущие наименьший отрицательный заряд.

В 1897 г. Дж. Томсон (Англия) исследовал эти частицы и назвал их электронами. Так как электроны могут быть получены независимо от вещества, из которого состоят электроды, то это доказывает, что электроны входят в состав атомов любого элемента.

В 1896 г. А. Беккерель (Франция) открыл явление радиоактивности. Он обнаружил, что соединения урана обладают способностью испускать невидимые лучи, действующие на фотографическую пластинку, завернутую в черную бумагу.

В 1898 г., продолжая исследования Беккереля, М. Кюри-Складовская и П. Кюри открыли в урановой руде два новых элемента – радий и полоний, обладающие очень большой активностью излучения.




радиоактивный элемент

Свойство атомов различных элементов самопроизвольно превращаться в атомы других элементов, сопровождающееся испусканием альфа -, бета - и гамма – лучей, не видимых невооруженным глазом, называется радиоактивностью.

Следовательно, явление радиоактивности является прямым доказательством сложного строения атомов.

Электроны являются составной частью атомов всех элементов. Но электроны заряжены отрицательно, а атом в целом электронейтрален, то, очевидно, внутри атома находится положительно заряженная часть, которая своим зарядом компенсирует отрицательный заряд электронов.

Экспериментальные данные о наличии положительно заряженного ядра и его расположении в атоме были получены в 1911 г. Э. Резерфордом (Англия), который предложил планетарную модель строения атома. Согласно этой модели атом состоит из положительно заряженного ядра, очень малого по размерам. В ядре сосредоточена почти вся масса атома. Атом в целом электронейтрален, следовательно, суммарный заряд электронов должен быть равен заряду ядра.

Исследования Г. Мозли (Англия, 1913 г.) показали, что положительный заряд атома численно равен порядковому номеру элемента в периодической системе Д.И. Менделеева.

Итак, порядковый номер элемента указывает число положительных зарядов ядра атома, а так же число движущихся в поле ядра электронов. В этом заключается физический смысл порядкового номера элемента.

Согласно ядерной модели наиболее просто устроен атом водорода: ядро несет один элементарный положительный заряд и массу, близкую к единице. Оно называется протоном («простейший»).

В 1932 г. физик Д.Н. Чедвик (Англия) установил, что лучи, испускаемые при бомбардировке атома альфа-частицами, обладают огромной проницательной способностью и представляют собой поток электронейтральных частиц – нейтронов.

На основании изучения ядерных реакций Д.Д. Иваненко (физик, СССР, 1932 г.) и одновременно В.Гейзенберг (Германия) сформулировали протонно-нейтронную теорию строения ядер атомов, согласно которой ядра атомов состоят из положительно заряженных частиц-протонов и нейтральных частиц-нейтронов (1 Р) - протон имеет относительную массу 1 и относительный заряд + 1. 1

(1 n) – нейтрон имеет относительную массу 1 и заряд 0.

Таким образом, положительный заряд ядра определяется числом протонов в нем и равен порядковому номеру элемента в ПС; массовое число – А(относительная масса ядра) равно сумме протонов (Z) нейтронов (N) :

A = Z + N; N = A- Z

Изотопы

Атомы одного элемента, имеющие одинаковый заряд ядра и разное массовое число – изотопы. У изотопов одного элемента одинаковое число протонов, но разное число нейтронов.

Изотопы водорода:


1 Н 2 Н 3 Н 3 – массовое число

1 - заряд ядра

протий дейтерий тритий

Z = 1 Z = 1 Z =1

N = 0 N = 1 N = 2

1протон 1 протон 1 протон

0 нейтронов 1 нейтрон 2 нейтрона

Изотопы одного элемента имеют одинаковые химические свойства и обозначаются одним химическим символом, занимают одно место в П.С. Так как масса атома практически равна массе ядра (масса электронов ничтожно мала), то каждый изотоп элемента характеризуется, как и ядро, массовым числом, а элемент атомной массой. Атомная масса элемента – это среднее арифметическое между массовыми числами изотопов элемента с учетом процентного содержания каждого изотопа в природе.

Предложенная Резерфордом ядерная теория строения атома получила широкое распространение, но в дальнейшем исследователи натолкнулись на ряд принципиальных трудностей. Согласно классической электродинамике электрон должен излучать энергию и двигаться не по окружности, а по спиралевидной кривой и в итоге упасть на ядро.

В 20 – х годах XX в. ученые установили, что электрон имеет двойственную природу, обладает свойствами волны и частицы.

Масса электрона равна 1 ___ массы водорода, относительный заряд

равен (-1) . Число электронов в атоме равно порядковому номеру элемента. Электрон движется по всему объему атома, создавая электронное облако с неравномерной плотностью отрицательного заряда.

Представление о двойственной природе электрона привело к созданию квантово-механической теории строения атома (1913 г. , датский ученый Н. Бор). Главный тезис квантовой механики – микрочастицы имеют волновую природу, а волны – свойства частиц. Квантовая механика рассматривает вероятность нахождения электрона в пространстве вокруг ядра. Область наиболее вероятного нахождения электрона в атоме (≈ 90%) называется атомной орбиталью.


Каждый электрон в атоме занимает определенную орбиталь и образует электронное облако, которое является совокупностью различных положений быстро движущегося электрона.

Химические свойства элементов определяются строением электронных оболочек их атомов.


Похожая информация.