Лето

Научно естественные дисциплины. Развитие естествознания и естественные науки. Структура современного естествознания

Современная наука, будучи частью культуры, также не является однородной. Она прежде всего подразделяется на гуманитарные и естественнонаучные отрасли, сообразно тому в области общественного сознания или общественного бытия лежит предмет их исследования. В нашей дисциплине будут рассматриваться основные концепции, выработанные современными естественными науками.

Е стественные науки различаются по степени общности в зависимости от предмета их изучения . Так, пожалуй, наибольшей степенью общности на сегодняшний день обладает математика — наука о соотношениях. Все, к чему можно применить понятия: больше, меньше, равно, не равно, относится к области применимости математики. Поэтому использование математических методов стало неотъемлемой частью методологии большинства прикладных наук.

Огромной степенью общности обладает физика — наука о движении. Движение является необходимым атрибутом материи. Оно пронизывает все стороны общественного бытия и находит отражение в общественном сознании. Поэтому разработки, созданные физикой, оказываются полезными далеко за пределами традиционной области их применения.

Возьмем, к примеру, экономику капиталистического общества. Значительнейшую роль в ней играет движение капитала и товара. Товар, созданный производителем, движется к потребителю, в то время, как его денежный эквивалент совершает обратное движение.

Физике хорошо известны подобные системы с качественным преобразованием движения и наличием обратной связи между их элементами. Типичным примером такой системы является, например, колебательный контур, состоящий из конденсатора, катушки индуктивности и сопротивления (резистора), включенных последовательно. Подобные системы хорошо описываются математическими уравнениями, имеющими два вида решения: колебательный, — если уровень обратной связи высок и релаксационный, — если в цепь обратной связи внесено достаточное затухание. Это затухание определяется величиной энергии, рассеиваемой в цепи обратной связи.

Капитализм стадии первоначального накопления, подробно описанный К. Марксом в его знаменитой работе “Капитал”, обладал значительным уровнем обратной связи, что должно было приводить к колебательным процессам в экономике. Действительно, для такого капитализма характерными были кризисы перепроизводства. Из-за возможности кризисов капитализм объявлялся “загнивающим”.

Анализ кризисов, произведенный в основном в США, привел экономистов к выводу о том, что следует внести элемент рассеяния в цепь товарно-денежного движения.

Рассеивать можно товар. Такие попытки предпринимались в США в период так называемой Великой депрессии. Пшеницу топили в Гудзоновом заливе, апельсины жгли в паровозных топках. Уничтожение материальных ценностей, безусловно, снижает размах колебаний товарно-денежного потока. Однако в целом оно невыгодно обществу.

Более удачным оказалось рассеяние денег. Оно выражается в виде дефицита платежного баланса. Проще говоря, все общество начинает жить в долг. В результате такого рассеяния кризисы перепроизводства в современной капиталистической экономике исчезли.

После выхода на арену нефтяных арабских стран, не охваченных механизмом рассеяния товарно-денежной массы, капиталистический мир снова залихорадило. Однако дипломатические усилия и международные экономические санкции позволили ввести экономику этих стран в общую схему платежного дефицита. После этого в капиталистическом мире снова наступила сравнительная стабильность.

Следующей по степени общности предмета является химия — наука о строении вещества и его преобразовании. Она обслуживается физикой и математикой как вспомогательными инструментами. Химия имеет четко определенную и весьма обширную область применения.

Область применения биологии еще более ограничена, но, конечно, отнюдь не менее важна. Это наука о живом. Ее понимания требует глубоких познаний в области математики, физики, химии. Чтобы осознать всю глубину проблем, стоящих перед биологией, помыслите на досуге о том, чем же живое отличается от неживого.

Химия и биология замечательны тем, что они выработали и развили концепцию классификации. Помимо химии и биологии она широко применяется в вычислительной математике и представляет несомненный интерес для изучающих экономику.

Кроме перечисленных фундаментальных естественных наук имеется еще большое количество прикладных наук. Например, геология и география — науки о Земле и ее устройстве. Анатомия и физиология изучают биологические особенности человека. На сегодняшний день очень популярны так называемые пограничные научные дисциплины. Как говорили раньше: “Дисциплины, возникающие на стыке наук”. Это биофизика, биохимия, физическая химия, математическая физика и т. д. Особую роль среди них играет современная экология — наука, призванная решать глобальную экологическую проблему, созданную человечеством буквально в последние десятилетия.

Еще в конце прошлого столетия Земля была в основном аграрной планетой со сравнительно небольшим количеством городов и низким уровнем индустриального производства. Сельское хозяйство было практически безотходным. Для примера поезжайте в современную деревню (я не имею в виду дачные поселки). Там вы, как правило, не обнаружите свалки. Предметы, входящие в крестьянский обиход, практически полностью и без остатка утилизируются.

Совершенно иная картина наблюдается в городах. Человечество подошло к той черте, начиная с которой оно может быть задавлено отходами собственной жизнедеятельности, в первую очередь бытовым мусором и отходами современного химического и перерабатывающего производства. Общая для так называемых развитых стран тенденция к вытеснению вредных производств в слаборазвитые страны (в том числе и Россию) не спасает положения. Решение может быть найдено только объединенными усилиями всего человечества.

Наука – это сфера деятельности человека, которая направлена на теоретическую систематизацию знаний о действительности, носящих объективный характер.

Наука и научные знания

Основой любой науки является сбор фактов, их обработка, систематизация, а также критический анализ, который позволяет построить причинно-следственную связь.

Гипотезы и теории, которые подтверждаются фактами ил опытами, формулируются в виде законов общества либо же законов природы.

Научные знания представляют собой систему знаний о законах общества, природы, мышления. Именно научные знания отражают законы развития мира и составляют его научную картину.

Научные знания возникают в результате постижения человеческой деятельности и окружающей действительности. Научные знания обладают различными видами достоверности.

Система наук

По своему предмету изучению наука не является однородной, она образовывает множество отдельных систем наук. В период античности все научные знания были объединены философией - то есть существовала единая научная система.

Со временем от философии отделилась математика, медицина и астрология. В эпоху Возрождения отдельными системами наук стали химия и физика .

В конце 19 века статус самостоятельных научных знаний приобрела социология, психология и биология. Условно все науки, согласно их предмету изучения, можно разделить на три больших системы:

Общественные науки (социология, история, религиеведенье, обществознание);

Технические науки (агрономия, механика, строительство и архитектура);

Естественные науки (биология, химия, физика)

Естественные науки

Естественные науки – это система наук, которые изучают влияние внешних природных явлений на жизнедеятельность человека. Основой естественных наук является соотношение законов природы с законами, которые вывел человек в ходе своей деятельности.

В основе всех естественных наук лежит естествознание – наука, которая непосредственно изучает природные явления. Наиболее значимый вклад в развитие естественных наук сделали такие великие ученые как Исаак Ньютон, Блез Паскаль и Михаил Ломоносов.

Общественные науки

Общественные науки – это система наук, главным предметом изучения которых является изучение закономерностей функционирования общества, а также основных его составляющих. Проблемы общества интересовали человечество еще в период античности.

Именно тогда начали впервые поднимать вопросы о том, какова роль индивида в общественной жизни, каким должно быть государство, что нужно для того, чтобы создать общество всеобщего благоденствия.

Основоположниками современных общественных наук являются Руссо, Локк и Гоббс. Именно они впервые сформулировали философскую основу развития общественности.

Методы исследования

В современной науке выделяются два основных метода исследования: теоретический и эмпирический. Эмпирический метод исследования представляет собой накопление фактов, наблюдение явление и поиск логической связи между фактом и явлением.

1. Естественные науки – понятие и предмет изучения 3

2. История зарождения естествознания 3

3. Закономерности и особенности развития естествознания 6

4. Классификация естественных наук 7

5. Основные методы естествознания 9

Литература

    Аруцев А.А., Ермолаев Б.В., и др. Концепции современного естествознания. – М., 1999.

    Матюхин С.И., Фроленков К.Ю.Концепции современного естествознания. – Орлов, 1999.

        1. Естественные науки – понятие и предмет изучения

Естествознание – это естественные науки или совокупность наук о природе. На современном этапе развития все науки делятся на общественные или гуманитарные, и естественные .

Предметом изучения общественных наук является человеческое общество и законы его развития, а также явления, так или иначе связанные с человеческой деятельностью.

Предметом изучения естественных наук является окружающая нас Природа, т. е. различные виды материи, формы и законы их движения, их связи. Система естественных наук, взятых в их взаимной связи, как целое, образует основу одной из основных областей научных знаний о Мире – естествознания.

Ближайшей, или непосредственной, целью естествознания является познание объективной Истины , поиск сущности явлений Природы, формулировка основных законов Природы, которая дает возможность предвидеть или создавать новые явления. Конечной целью естествознания является практическое использование познанных законов , сил и веществ Природы (производственно-прикладная сторона познания).

Естествознание, таким образом, является естественнонаучным фундаментом философского понимания Природы и Человека как части этой Природы, теоретической основой промышленности и сельского хозяйства, техники и медицины.

      1. 2. История зарождения естествознания

У истоков современной науки стоят древние греки. Более древние знания дошли до нас только в виде осколков. Они бессистемны, наивны и чужды нам по духу. Греки были первыми, кто изобрел доказательство. Ни в Египте, ни в Месопотамии, ни в Китае такого понятия не существовало. Может быть потому, что все эти цивилизации были основаны на тирании и безусловном подчинении авторитетам. В таких условиях даже сама мысль о разумных доказательствах кажется крамольной.

В Афинах впервые за всю мировую историю возникла республика. Несмотря на то, что она расцвела на труде рабов, в Древней Греции сложились условия, при которых стал возможен свободный обмен мнениями, и это привело к небывалому расцвету наук.

В средние века потребность рационального познания природы совершенно угасла рядом с попытками осмыслить предназначение человека в рамках различных религиозных вероисповеданий. В продолжение почти десяти веков религия давала исчерпывающие ответы на все вопросы бытия, которые не подлежали ни критике, ни даже обсуждению.

Сочинения Евклида, автора той геометрии, которая изучается сейчас во всех школах, были переведены на латинский язык и стали известны в Европе только в XII веке. Однако в то время их воспринимали просто как совокупность остроумных правил, которые надлежало заучить наизусть - настолько они были чужды духу средневековой Европы, привыкшей верить, а не искать корней Истины. Но объем знаний стремительно рос, и их уже не удавалось согласовать с направлением мыслей средневековых умов.

Конец средневековья обычно связывают с открытием Америки в 1492 г. Некоторые указывают даже более точную дату: 13 декабря 1250 г.- день, когда в замке Флорентино близ Лючеры умер король Фридрих II Гогенштауфен. Конечно, не следует относиться к таким датам всерьез, но несколько таких дат, взятых вместе, создают несомненное ощущение достоверности перелома, который произошел в сознании людей на рубеже XIII и XIV веков. В истории этот период назвали Возрождением. Подчиняясь внутренним законам развития и без видимых на то причин, Европа всего за два века возродила зачатки древних знаний, до того более десяти веков находившихся в забвении и получивших впоследствии название научных.

В период Возрождения в умах людей произошел поворот от стремления осознать свое место в мире к попыткам понять его рациональное устройство без ссылок на чудеса и божественное откровение. Вначале переворот носил аристократический характер, но изобретение книгопечатания распространило его на все слои общества. Суть перелома - освобождение от давления авторитетов и переход от средневековой веры к знанию нового времени.

Церковь всячески противилась новым веяниям, она строго судила философов, которые признавали, что есть вещи истинные с точки зрения философии, но ложные с точки зрения веры. Но рухнувшую плотину веры починить было уже нельзя, и освобожденный дух стал искать новые пути для своего развития.

Уже в XIII веке английский философ Роджер Бекон писал: “Существует естественный и несовершенный опыт, который не сознает своего могущества и не отдает себе отчета в своих приемах: им пользуются ремесленники, а не ученые... Выше всех умозрительных знаний и искусств стоит умение производить опыты, и эта наука есть царица наук...

Философы должны знать, что их наука бессильна, если они не применяют к ней могущественную математику... Невозможно отличить софизм от доказательства, не проверив заключение путем опыта и применения”.

В 1440 г. кардинал Николай Кузанский (1401- 1464) написал книгу “Об ученом невежестве”, в которой настаивал, что все познания о природе необходимо записывать в цифрах, а все опыты над нею производить с весами в руках.

Однако, утверждение новых взглядов происходило медленно. Арабские цифры, например, уже в X веке вошли во всеобщее употребление, но даже в XVI веке вычисления повсеместно производили не на бумаге, а с помощью особых жетонов, еще менее совершенных, чем конторские счеты.

Настоящую историю естествознания принято начинать с Галилея и Ньютона. Согласно той же традиции Галилео Галилей (1564- 1642) считается родоначальником экспериментальной физики, а Исаак Ньютон (1643- 1727)- основателем теоретической физики. Конечно в их время (см. историческую справку) не было такого разделения единой науки физики на две части, не было даже самой физики - она называлась натуральной философией. Но такое разделение имеет глубокий смысл: оно помогает понять особенности научного метода и, по существу, эквивалентно делению науки на опыт и математику, которое сформулировал еще Роджер Бэкон.

Естествознание

В самом широком и наиболее правильном смысле под именем E. должно понимать науку о строении вселенной и о законах, ею управляющих. Стремление и цель E. заключается в механическом объяснении строения космоса во всех его подробностях, в пределах познаваемого, приемами и способами, свойственными точным наукам, т. е. посредством наблюдения, опыта и математического вычисления. Таким образом, все трансцендентальное не входит в область E., ибо его философия вращается в пределах механического, следовательно, строго определенного и отграниченного круга. С указанной точки зрения все отрасли Е. представляют 2 главных отдела или 2 главные группы, а именно:

I.Общее естествознание исследует такие свойства тел, которые присвоены им всем безразлично, а потому и могут называться общими. Сюда относится механика , физика и химия , достаточно охарактеризованные в дальнейших соответствующих статьях. Вычисление (математика) и опыт суть главные приемы в этих отраслях знания.

II. Частное естествознание исследует формы, строение и движение, свойственные исключительно тем разнообразным и бесчисленным телам, которые мы называем естественными, с целью разъяснить представляемые ими явления с помощью законов и выводов общего E. Вычисление и тут может прилагаться, но сравнительно только в редких случаях, хотя достижение возможной точности и тут состоит в стремлении свести все к вычислению и к решению вопросов синтетическим путем. Последнее уже достигнуто одной из отраслей частного E., а именно астрономией в ее отделе, называемом небесной механикой , тогда как физическая астрономия может разрабатываться главным образом с помощью наблюдения и опыта (спектральный анализ), как это свойственно всем отраслям частного E. Таким образом сюда относятся следующие науки: астрономия (см.), минералогия в обширном значении этого выражения, т. е. со включением геологии (см.), ботаника и зоология . Три под конец названные науки и до сих пор именуются в большинстве случаев естественной историей , это устаревшее выражение следовало бы устранить или применять только к их чисто описательной части, получившей, в свою очередь, более рациональные названия, смотря по тому, что собственно описывается: минералы, растения или животные. Каждая из отраслей частного Е. подразделяется на несколько отделов, получивших самостоятельное значение, вследствие своей обширности, а главное вследствие того, что изучаемые предметы приходится рассматривать с различных точек зрения, требующих притом своеобразных приемов и методов. Каждая из отраслей частного Е. имеет сторону морфологическую и динамическую. Задача морфологии состоит в познании форм и строения всех естественных тел, задача динамики - в познании тех движений, которые своей деятельностью вызвали образование этих тел и поддерживают их существование. Морфология посредством точных описаний и классификаций получает выводы, которые считаются законами или вернее морфологическими правилами. Эти правила могут быть более или менее общими, т. е., например, относится к растениям и животным или только к одному из царств природы. Общих правил относительно всех трех царств нет, а потому ботаника и зоология составляют одну общую отрасль Е., называемую биологией. Минералогия, следовательно, составляет более обособленное учение. Морфологические законы или правила принимают все более и более частный характер по мере углубления в изучение строения и формы тел. Так, присутствие костяного скелета есть закон, относящийся только к позвоночным, присутствие семян - есть правило только касательно семенных растений, и т. д. Динамика частного Е. состоит из геологии в среде неорганической природы и из физиологии - в биологии . В этих отраслях прилагается преимущественно опыт, а отчасти даже вычисление. Таким образом, частные естественные науки могут быть представлены в следующей классификации:

Морфология (науки преимущественно наблюдательные) Динамика (науки преимущественно опытные или, как небесная механика , математические)
Астрономия Физическая Небесная механика
Минералогия Минералогия собственно с кристаллографией Геология
Ботаника Органография (морфология и систематика живых и отживших растений, палеонтология), география растений Физиология растений и животных
Зоология То же относительно животных, хотя выражение органография зоологами не употребляется
Науки, основой коих служит не только общее, но и частное Е.
Физическая география или физика земного шара
Метеорология Могут быть отнесены также к физике , так как составляют, главным образом, приложение этой науки к явлениям, происходящим в земной атмосфере
Климатология
Орография
Гидрография
Сюда же относится фактическая сторона географии животных и растений
То же, что предыдущие, но с присоединением утилитарных целей.

Степень развития, а также свойства самих предметов изучения перечисленных наук были причиной, что, как уже сказано, методы, ими употребляемые, весьма различны. Вследствие этого каждая из них распадается на множество отдельных специальностей, представляющих нередко значительную целостность и самостоятельность. Так, в физике - оптика , акустика и проч. изучаются самостоятельно, хотя движения, составляющие сущность указанных явлений, и совершаются по законам однородным. Между частными науками, древнейшая из них, а именно небесная механика, составлявшая еще недавно почти всю астрономию, сведена почти исключительно к математике , тогда как физическая часть этой науки призывает себе на помощь химический (спектральный) анализ. Остальные частные науки разрастаются с такой быстротой и достигли такого необыкновенного расширения, что дробление их на специальности усиливается с каждым почти десятилетием. Так, в

Естествознание представляет собой сферу человеческой деятельности, направленную на получение новой информации об окружающем мире, живущем по объективным, независящим от человека законам. В противоположность естественным наукам, объектом изучения гуманитарных наук является сама человеческая деятельность, как субъективный процесс. Тем не менее, этот субъективный процесс изучается объективными методами. Именно последнее обстоятельство позволяет считать гуманитарные науки именно науками, а не искусством. Если целью естественонаучной деятельности человека является познать мир таким, каков он есть на самом деле, то цель деятельности человека в сфере искусства - показать, как мир субъективно воспринимается человеком.

Современное естествознание нельзя представлять как некий архив, где просто накоплено "разложено по пололчкам" огромное количество фактов и разнообразных сведений об устройстве окружающего мира. Естествознание сопоставляет факты, наблюдения и стремится создать его МОДЕЛЬ, в которой эти факты собраны в единую, НЕПРОТИВОРЕЧИВУЮ систему на основе теоретических понятий, положений и обощений. Естествознание также стремится расширять и уточнять создаваемую картину мира, используя эту модель дая планироания и выполнения новых наблюдений и экспериментов.

Приведен некоторые отличительные черты (требования) научной методологии в области естествознания:

прогностичность - обобщенные в виде теории научные понятия, модели должны предсказывать поведение объектов окружающего мира, наблюдаемое в эксперименте или непосредственно в окружающей среде

воспроизводимость - научные эксперименты должны выполняться таким образом, чтобы они могли быть воспроизведены другими исследователями и в других лабораториях

минимальная достаточность - в процессе описания научных данных нельзя создавать понятия, сверх тех, которые необходимы (т.н. принцип "бритвы Оккама")

объективность - при построение научной теории, гипотезы недопустимо избирательно учитывать только избранные (отбрасывая другие данные) факты и наблюдения, в зависимости от личных наклонностей, интересов, привязанностей и уровня подготовки ученого.

переемственность - научная работа должна максимально учитывать и ссылаться на предисторию изучаемого вопроса

Естественные науки - это не только получение новой информации, но и получение информации о том, как получать новую информацию. Являясь одновременно целью и средством человеческой деятельности, естествознание представляет собой саморазвивающийся и самоускоряющийся процесс.

вселенная черный дыра пространство

Системная классификация естественных наук

Традиционно к естественным относят такие науки, как физика, химия, биология, геология, география, а также другие дисциплины.

Насколько объективна такая классификация, где и по какому принципу должны проводиться границы между разными науками, можно ли те или иные разделы естествознания выделять в отдельные науки? Очевидно, что для ответа на этот вопрос необходима естественная классификация иерархии научного знания, которая не зависела бы от традиций и была бы объективной. Другими словами, необходим объективный критерий выделения той или иной области знаний в отдельную науку.

К такой классификации можно отнести системную классификацию наук - не только естественных. В ее основе лежит следующий принцип: объектом каждой науки должна служить целостная, обособленная система.

Остановимся более подробно на понятии "система".

Под системой обычно понимают совокупность взаимодействующих элементов, каждый из которых необходим для выполнения этой системой своих специфических функций. Как мы видим, определение системы состоит здесь из двух частей, причем вторая часть, касающаяся системных элементов, является нетривиальной и неочевидной. Из этого определения следует, что не любая составная часть системы представляет собой системный элемент. Так, например, сигнальная лампочка на передней панели компьютера не будет являться его системным элементом, поскольку удаление лампочки или выход из строя не вызовет сбой выполнения программных задач, тогда как процессор, очевидно, таковым элементом является.

Из приведенного нами определения следует, что число системных элементов в системе всегда конечно, а сами они дискретны и их выбор не случаен. Отдельные элементы и их свойства при объединении в систему всегда рождают новое качество, системную функцию, не сводимую к качеству и функциям составляющих ее элементов.

Системы бывают естественные и искусственные, объективные и субъективные. К естественным наукам относят науки, имеющие в качестве объекта своего изучения естественные системы, которые всегда объективны. Субъективные системы представляют собой объекты изучения гуманитарных наук. Отметим, что некоторые системы, например, информационные, могут одновременно являться искусственными и в тоже время объективными. Еще один пример: компьютер, как целостная информационная система, традиционно подлежит изучению в рамках науки информатики. С точки зрения системной классификации более точным было бы выделение в качестве самостоятельной науки не информатики вообще, а компьютерной информатики, поскольку информационные системы могут быть самыми разными.

Системные элементы сами тоже являются системами; можно сказать, что системы разных порядков вложены друг в друга, как матрешки.

Например, философия имеет в качестве объекта для своего изучения предельно общую систему, состоящую всего из двух элементов - материи и сознания. Если говорить о наиболее крупной из известных нам систем, то таковой является Вселенная, изучаемая как целостный объект наукой космологией.

Системами самого низшего порядка, из известных современной науке, принято считать элементарные частицы. Мы еще мало что знаем о внутреннем строении элементарных частиц, даже если принимать во внимание гипотезу о существовании кварков, которые пока в свободном виде не получены. Тем не менее, к системным элементам, составляющим элементарные частицы, вполне можно отнести не только кварки, но и их свойства (качества) - заряд, массу, спин и другие характеристики.

Наука, изучающая элементарные частицы как целостные, обособленные системы, называется физикой элементарных частиц.

Элементарные частицы являются элементами систем более высокого порядка - атомных ядер, и еще более высокого - атомов. Соответственно выделяется ядерная и атомная физика.

В свою очередь, атомы объединяются в молекулы. Наука, имеющая в качестве объекта своего изучения молекулы, называется химией. Как тут не вспомнить известное определение: молекулами называют мельчайшие частицы вещества, которые еще сохраняют химические свойства этого вещества!

Будем дальше двигаться по иерархической лестнице естественных наук. В живых организмах молекулы участвуют в сложных взаимодействиях это длинные последовательности и циклы реакций, катализируемые ферментами. Существуют, например, т.н. гликолитический путь, цикл Кребса, цикл Кальвина, пути синтеза аминокислот, нуклеиноых кислот и многие другие. Все они представляют собой сложные, целостные самоорганизующиеся системы, получившие название биохимических. Соответственно, наука, их изучающая, названа биохимией.

Биохимические процессы и сложные молекулярные структуры объединяются в еще более сложные образования - живые клетки, изучаемые цитологией. Клетки образуют ткани, изучаемые, как целостные системы, другой наукой - гистологией. Следующий уровень иерархии относится к обособленным живым комплексам, образованным тканями - органам. В комплексе биологических дисциплин не принято выделять науку, которую можно было бы назвать «органологией», однако в медицине известны такие науки, как кардиология (изучает сердце и сердечно-сосудистую систему), пульмонология (легкие), урология (органы мочеполовой системы) и др.

И, наконец, мы приблизились к науке, которая в качестве объекта своего изучения имеет живой организм, как целостную, обособленную систему (особь). Это наукой является физиология. Различают физиологию человека, животных, растений и микроорганизмов.

Системная классификация естественных наук представляет собой не просто некое абстрактно-логическое построение, а является вполне прагматическим подходом для решения организационных задач.

Представьте себе следующую ситуацию. В научный совет по защите диссертаций на соискание степени кандидата биологических наук приходят два соискателя. Первый исследовал процесс дыхания у крыс, подвергшихся действию высоких физических нагрузок. Он изучал содержание отдельных метаболитов цикла Кребса, особенности функционирования компонен-тов цепи переноса электронов в митохондриях и другие биохимические особенности процесса дыхания крыс, которых вынуждали к высокой физической активности.

Другой соискатель изучал в основном все то же самое, теми же методами, но его интересовало не воздействие физических нагрузок на дыхание, а сам процесс дыхания, как таковой, вне зависимости от физической нагрузки или даже от того, какой организм исследовался.

Первому соискателю сообщают, что его работа относится к физиологии и поэтому принимается к рассмотрению в данном совете со специализацией «физиология человека и животных», а другому отказывают, сославшись на несоответствие специализации работы («биохимия») со специализацией совета.

Как же так случилось, что очень похожие работы оказались отнесены к разным наукам? В первом случае - физическая деятельность - это функция живого организма, как целостной системы, и поэтому работа относится к физиологии. Во втором - объектом изучения является не организм в целом, а отдельная биохимическая система.

Дальнейшее восхождение по иерархической лестнице естественных наук подводит нас к интересной узловой точке. Живые организмы (особи), как системные элементы, могут входить в разные системы более высокого порядка. Система, состоящая только из двух элементов - особи (или популяции особей) и окружающей среды (биотической и абиотической ее части), рассматривается в экологии.

Систему, состоящую из особей разных видов (или популяций разных видов) изучает наука биоценология. Соответственно предмет (система) изучения этой науки может включать в себя многие системные элементы. Совокупность взаимодействующих популяций разных видов, занимающих одну и ту же территорию, называют биоценозами. Интересно, что биоценозы не являются случайной совокупностью популяций. Они представляют собой сложные, самоорганизующиеся системы, имеющие некоторые черты живых организмов. Как и особи, биоценозы рождаются, развиваются (т.н. сукцессия), стареют и умирают. Они дискретны: между разными биоценозами очень часто можно наблюдать явно выраженную границу, тогда как промежуточные формы отсутствуют, либо неустойчивы. Биоценозы обычно называют по доминирующему растительному виду - если это, например, дуб, то биоценоз называется дубравой, если это ковыль, то он будет иметь название "ковыльная степь".

Системой более высокого порядка, чем биоценоз, является биосфера Земли. В русском языке, однако, слово "биосферология" отсутсвует; вместо него пользуются термином "учение о биосфере". Приоритет создания этой науки принадлежит выдающемуся российскому ученому, академику В. И. Вернадскому (1863-1945), который впервые обратил внимание на то, что биосфера - это не просто сумма всех биоценозов Земли, а сложный, самоорганизующийся объект, качественно отличающийся от любых других известных систем.

В свою очередь, биосфера является лишь одним из системных элементов нашей планеты. К сожалению, наука, которая описывала бы поведение Земли как целостной, самоорганизующейся системы, отсутствует по объективным причинам. Современным естествознанием накоплено слишком мало сведений о том, как взаимодействуют между собой различные планетарные оболочки и уровни организации - биосфера, литосфера, гидросфера, мантия, ядро и др.

Традиционно не принято выделять в отдельную науку наши знания о формировании, строении и процессах, определяющих поведение Солнечной системы как единого целого. Объективно, однако, такая область знаний существует и рассматривается в рамках комплекса астрономических дисциплин. Это же самое касается и нашей галактики.

И, наконец, самая крупная из известных нам естественных систем - это Вселенная, которую, как мы уже говорили, изучает наука космология.

Итак, мы рассмотрели целую вереницу естественных наук и соответствующих им систем. Но где же среди них привычные нам биология и физика? По видимому, в рамках объективной, системной классификации мы не можем называть ни одну, ни другую дисциплину науками. Не существует отдельной обособленной системы (или хотя бы класса систем), в отношении которой можно было бы сформулировать задачу физики (или биологии) как науки, изучающей эту систему: принцип "одна наука - одна система" перестает работать. Биология и физика распадаются на множество других наук. Тем не менее, традиционная, субъективная, классификация тоже имеет полное право на существование: она удобна и еще долго будет использоваться в естествознании.

При всем многообразии систем - больших и маленьких, естественных и искусственных, объективных и субъективных существуют некоторые их характеристики, свойственные всем системам вообще. Они так и называются общесистемные. Существует также наука, изучающая их - системология. Достижения системологии помогают ученым, работающим в других областях знаний, строить гипотезы и делать правильные научные выводы. Например, среди исследователей геронтологов (геронтология - наука о старении) иногда встречается точка зрения, что старение животных и человека определяется неким геном старения, повредив который, можно обеспечить неограниченно длительную молодость. Однако, выводы системологии говорят нам о другом. Стареют все сложные саморазвивающиеся системы, ограниченные в пространственном росте, поэтому причины старения человека и животных лежат гораздо глубже. В то же время общие выводы системологии имеют лишь методическое значение. Ими нельзя подменять конкретные знания. В рассматриваемом случае вполне можно допустить, что некоторые гены действительно могут ускорять старение, но удалив эти гены, или устранив какие-то другие, конкретные причины старения, мы должны понимать, что столкнемся с другими причинами и сможем лишь отодвинуть старость.