Времена года

Общий вид уравнения горизонтальной параболы. Каноническое уравнение параболы. Задания для самостоятельного решения

Во всей этой главе предполагается, что в плоскости (в которой лежат все рассматриваемые далее фигуры) выбран определенный масштаб; рассматриваются лишь прямоугольные системы координат с этим масштабом.

§ 1. Парабола

Парабола известна читателю из школьного курса математики как кривая, являющаяся графиком функции

(рис. 76). (1)

График любого квадратного трехчлена

также является параболой; можно посредством одного лишь сдвига системы координат (на некоторый вектор ОО), т. е. преобразования

достигнуть того, чтобы график функции (во второй системе координат) совпадал с графиком (2) (в первой системе координат).

В самом деле, произведем подстановку (3) в равенство (2). Получим

Мы хотим подобрать так, чтобы коэффициент при и свободный член многочлена (относительно ) в правой части этого равенства были равны нулю. Для этого определяем из уравнения

что и дает

Теперь определяем из условия

в которое подставляем уже найденное значение . Получим

Итак, посредством сдвига (3), в котором

мы перешли к новой системе координат, в которой уравнение параболы (2) получило вид

(рис. 77).

Вернемся к уравнению (1). Оно может служить определением параболы. Напомним ее простейшие свойства. Кривая имеет ось симметрии: если точка удовлетворяет уравнению (1), то точка симметричная точке М относительно оси ординат, также удовлетворяет уравнению (1) - кривая симметрична относительно оси ординат (рис. 76).

Если , то парабола (1) лежит в верхней полуплоскости , имея с осью абсцисс единственную общую точку О.

При неограниченном возрастании модуля абсцисс ордината также неограниченно возрастает. Общий вид кривой дай на рис. 76, а.

Если (рис. 76, б), то кривая расположена в нижней полуплоскости симметрично относительно оси абсцисс к кривой .

Если перейти к новой системе координат, полученной из старой заменой положительного направления оси ординат на противоположное, то парабола, имеющая в старой системе уравнение , получит в новой системе координат уравнение у . Поэтому при изучении парабол можно ограничиться уравнениями (1), в которых .

Поменяем, наконец, названия осей, т. е. перейдем к иовой системе координат, в которой осью ординат будет старая ось абсцисс, а осью абсцисс - старая ось ординат. В этой новой системе уравнение (1) запишется в виде

Или, если число - обозначить через , в виде

Уравнение (4) называется в аналитической геометрии каноническим уравнением параболы; прямоугольная система координат, в которой данная парабола имеет уравнение (4), называется канонической системой координат (для этой параболы).

Сейчас мы установим геометрический смысл коэффициента . Для этого берем точку

называемую фокусом параболы (4), и прямую d, определенную уравнением

Эта прямая называется директрисой параболы (4) (см. рис. 78).

Пусть - произвольная точка параболы (4). Из уравнения (4) следует, что Поэтому расстояние точки М от директрисы d есть число

Расстояние точки М от фокуса F есть

Но , поэтому

Итак, все точки М параболы равноудалены от ее фокуса и директрисы:

Обратно, каждая точка М, удовлетворяющая условию (8), лежит на параболе (4).

В самом деле,

Следовательно,

и, после раскрытия скобок и приведения подобных членов,

Мы доказали, что каждая парабола (4) есть геометрическое место точек, равноудаленных от фокуса F и от директрисы d этой параболы.

Вместе с тем мы установили и геометрический смысл коэффициента в уравнении (4): число равно расстоянию между фокусом и директрисой параболы.

Пусть теперь на плоскости даны произвольно точка F и прямая d, не проходящая через эту точку. Докажем, что существует парабола с фокусом F и директрисой d.

Для этого проведем через точку F прямую g (рис. 79), перпендикулярную к прямой d; точку пересечения обеих прямых обозначим через D; расстояние (т. е. расстояние между точкой F и прямой d) обозначим через .

Прямую g превратим в ось, прнняв на ней направление DF в качестве положительного. Эту ось сделаем осью абсцисс прямоугольной системы координат, началом которой является середина О отрезка

Тогда и прямая d получает уравнение .

Теперь мы можем в выбранной системе координат написать каноническое уравнение параболы:

причем точка F будет фокусом, а прямая d - директрисой параболы (4).

Мы установили выше, что парабола есть геометрическое место точек М, равноудаленных от точки F и прямой d. Итак, мы можем дать такое геометрическое (т. е. не зависящее ни от какой системы координат) определение параболы.

Определение. Параболой называется геометрическое место точек, равноудаленных от некоторой фиксированной точки («фокуса» параболы) и некоторой фиксированной прямой («директрисы» параболы).

Обозначая расстояние между фокусом и директрисой параболы через , мы можем всегда найти прямоугольную систему координат, каноническую для данной параболы, т. е. такую, в которой уравнение параболы имеет канонический вид:

Обратно, всякая кривая, имеющая такое уравнение в некоторой прямоугольной системе координат, является параболой (в только что установленном геометрическом смысле).

Расстояние между фокусом и директрисой параболы называется фокальным параметром, или просто параметром параболы.

Прямая, проходящая через фокус перпендикулярно к директрисе параболы, называется ее фокальной осью (или просто осью); она является осью симметрии параболы - это вытекает из того, что ось параболы является осью абсцисс в системе координат, относительно которой уравнение параболы имеет вид (4).

Если точка удовлетворяет уравнению (4), то этому уравнению удовлетворяет и точка , симметричная точке М относительно оси абсцисс.

Точка пересечения параболы с ее осью называется вершиной параболы; она является началом системы координат, канонической для данной параболы.

Дадим еще одно геометрическое истолкование параметра параболы.

Проведем через фокус параболы прямую, перпендикулярную к оси параболы; она пересечет параболу в двух точках (см. рис. 79) и определит так называемую фокальную хорду параболы (т. е. хорду, проходящую через фокус параллельно директрисе параболы). Половина длины фокальной хорды и есть параметр параболы.

В самом деле, половина длины фокальной хорды есть абсолютная величина ординаты любой из точек , абсцисса каждой из которых равна абсциссе фокуса, т. е. . Поэтому для ординаты каждой из точек имеем

что и требовалось доказать.

Лекции по алгебре и геометрии. Семестр 1.

Лекция 17. Парабола.

Глава 17. Парабола.

п.1. Основные определения.

Определение. Параболой называется ГМТ плоскости равноудаленных от одной фиксированной точки плоскости, называемой фокусом, и одной фиксированной прямой, называемой директрисой.

Определение. Расстояние от произвольной точки М плоскости до фокуса параболы называется фокальным радиусом точки М.

Обозначения: F– фокус параболы,r– фокальный радиус точки М,d– расстояние от точки М до директрисыD.

По определению параболы, точка М является точкой параболы тогда и только тогда, когда
.

По определению параболы, его фокус и директриса есть фиксированные объекты, поэтому расстояние от фокуса до директрисы есть величина постоянная для данной параболы.

Определение. Расстояние от фокуса параболы до ее директрисы называется фокальным параметром параболы.

Обозначение:
.

Введем на данной плоскости систему координат, которую мы будем называть канонической для параболы.

Определение. Ось, проведенная через фокус параболы перпендикулярно директрисе называется фокальной осью параболы.

Построим каноническую для параболы ПДСК, см. рис.2.

В качестве оси абсцисс выбираем фокальную ось, направление на которой выбираем от директрисы к фокусу.

Ось ординат проводим через середину отрезка FNперпендикулярно фокальной оси. Тогда фокус имеет координаты
.

п.2. Каноническое уравнение параболы.

Теорема. В канонической для параболы системе координат уравнение параболы имеет вид:

. (1)

Доказательство. Доказательство проведем в два этапа. На первом этапе мы докажем, что координаты любой точки, лежащей на параболе удовлетворяют уравнению (1). На втором этапе мы докажем, что любое решение уравнения (1) дает координаты точки, лежащей на параболе. Отсюда будет следовать, что уравнению (1) удовлетворяют координаты тех и только тех точек координатной плоскости, которые лежат на параболе.

Отсюда и из определения уравнения кривой будет следовать, что уравнение (1) является уравнением параболы.

1) Пусть точка М(х, у) является точкой параболы, т.е.

.

Воспользуемся формулой расстояния между двумя точками на координатной плоскости и найдем по этой формуле фокальный радиус данной точки М:

.

Из рисунка 2 мы видим, что точка параболы не может иметь отрицательной абсциссы, т.к. в этом случае
. Поэтому
и
. Отсюда получаем равенство

.

Возведем обе части равенства в квадрат:

и после сокращения получаем:

.

2) Пусть теперь пара чисел (х, у) удовлетворяет уравнению (1) и пусть М(х, у) – соответствующая точка на координатной плоскости Оху.

Тогда подставляем равенство (1) в выражение для фокального радиуса точки М:

, откуда, по определению параболы, следует, что точка М(х, у) лежит на параболе.

Здесь мы воспользовались тем, что из равенства (1) следует, что
и, следовательно,
.

Теорема доказана.

Определение. Уравнение (1) называется каноническим уравнением параболы.

Определение. Начало канонической для параболы системы координат называется вершиной параболы.

п.3. Свойства параболы.

Теорема. (Свойства параболы.)

1. В канонической для параболы системе координат, в полосе

нет точек параболы.

2. В канонической для параболы системе координат вершина параболы О(0; 0) лежит на параболе.

3. Парабола является кривой, симметричной относительно фокальной оси.

Доказательство. 1, 2) Сразу же следует из канонического уравнения параболы.

3) Пусть М(х, у) – произвольная точка параболы. Тогда ее координаты удовлетворяют уравнению (1). Но тогда координаты точки
также удовлетворяют уравнению (1), и, следовательно, эта точка также является точкой параболы, откуда и следует утверждение теоремы.

Теорема доказана.

п.4. Построение параболы.

В силу симметрии достаточно построить параболу в первой четверти, где она является графиком функции

,

а затем отобразить полученный график симметрично относительно оси абсцисс.

Строим график этой функции, учитывая, что данная функция является возрастающей на промежутке
.

п.5. Фокальный параметр гиперболы.

Теорема. Фокальный параметр параболы равен длине перпендикуляра к ее оси симметрии, восстановленного в фокусе параболы до пересечения с параболой.

Доказательство. Так как точка
является точкой пересечения параболы
с перпендикуляром
(см. рис.3), то ее координаты удовлетворяют уравнению параболы:

.

Отсюда находим
, откуда и следует утверждение теоремы.

Теорема доказана.

п.6. Единое определение эллипса, гиперболы и параболы.

Используя доказанные свойства эллипса и гиперболы, и определение параболы можно дать единое для всех трех кривых определение.

Определение. ГМТ плоскости, для которых отношение расстояния до одной фиксированной точки плоскости, называемой фокусом, к расстоянию до одной фиксированной прямой, называемой директрисой, есть величина постоянная, называется:

а) эллипсом, если эта постоянная величина меньше 1;

б) гиперболой, если эта постоянная величина больше 1;

в) параболой, если эта постоянная величина равна 1.

Эта постоянная величина, о которой идет речь в определении, называется эксцентриситетом и обозначается , расстояние от данной точки до фокуса есть ее фокальный радиусr, расстояние от данной точки до директрисы обозначается черезd.

Из определения следует, что те точки плоскости, для которых отношение есть величина постоянная образуют эллипс, гиперболу или параболу, взависимости от величины этого отношения.

Если
, то мы получаем эллипс, если
, то мы получаем гиперболу, если
, то мы получаем параболу.

п.7. Касательная к параболе.

Теорема. Пусть
– произвольная точка параболы

.

Тогда уравнение касательной к этой параболе

в точке
имеет вид:

. (2)

Доказательство. Достаточно рассмотреть случай, когда точка касания лежит в первой четверти. Тогда уравнение параболы имеет вид:

и ее можно рассматривать как график функции
.

Воспользуемся уравнением касательной к графику функции
в точке
:

где
– значение производной данной функции в точке
.

Найдем производную функции
и ее значение в точке касания:

,
.

Здесь мы воспользовались тем, что точка касания
является точкой параболы и поэтому ее координаты удовлетворяют уравнению параболы, т.е.

.

Подставляем найденное значение производной в уравнение касательной:

,

откуда получаем:

.

Так как точка
принадлежит параболе, то ее координаты удовлетворяют ее уравнению, т.е.
, откуда получаем

или
.

Отсюда следует

.

Теорема доказана.

п.8. Зеркальное свойство параболы.

Теорема. Касательная к параболе образует равные углы с ее осью симметрии и с фокальным радиусом точки касания.

Доказательство. Пусть
– точка касания,– ее фокальный радиус. Обозначим черезNточку пересечения касательной с осью абсцисс. Ордината точкиNравна нулю и точкаNлежит на касательной, следовательно, ее координаты удовлетворяют уравнению касательной. Подставляя координаты точкиNв уравнение касательной, получаем:

,

откуда абсцисса точки Nравна
.

Рассмотрим треугольник
. Докажем, что он равнобедренный.

Действительно,
. Здесь мы воспользовались равенством, полученным при выводе канонического уравнения параболы:

.

В равнобедренном треугольнике углы при основании равны. Отсюда

, ч.т.д.

Теорема доказана.

Замечание. Доказанную теорему можно сформулировать в виде зеркального свойства параболы.

Луч света, выпущенный из фокуса параболы, после отражения от зеркала параболы, идет параллельно оси симметрии параболы.

Действительно, так как угол падения луча на касательную равен углу отражения от нее, то угол между касательной и отраженным лучом равен углу между касательной и осью абсцисс, откуда следует, что отраженный луч параллелен оси абсцисс.

Замечание. Это свойство параболы получило широкое применение в технике. Если параболу вращать вокруг ее оси симметрии, то получим поверхность, которая называется параболоидом вращения. Если выполнить отражающую поверхность в форме параболоида вращения и в фокусе поместить источник света, то отраженные лучи идут параллельно оси симметрии параболоида. Так устроены прожектора и автомобильные фары. Если же в фокусе поместить устройство принимающее электромагнитные колебания (волны), то они отражаясь от поверхности параболоида попадают в это принимающее устройство. По такому принципу работают спутниковые тарелки.

Существует легенда, что в древности один полководец выстроил своих воинов вдоль берега, придав их строю форму параболы. Солнечный свет, отражаясь от начищенных до блеска щитов воинов собирался в пучок (в фокусе построенной параболы). Таким образом были сожжены корабли неприятеля. Некоторые источники приписывают это Архимеду. Так или иначе, но арабы называли параболоид вращения "зажигательным зеркалом".

Кстати, слово "focus" латинское и в переводе означает огонь, очаг. С помощью "зажигательного зеркала" можно в солнечный день разжечь костер и вскипятить воду. Так что становится понятным происхождение этого термина.

Слово "фокус" означает также некоторый трюк или хитрый прием. Раньше цирк назывался балаганом. Так еще балаганные артисты использовали зеркальное свойство эллипса и зажигая свет в одном фокусе эллипса они разжигали что-нибудь лекговоспламеняющее, помещенное в другом его фокусе. Это зрелище также стали называть фокусом. (Читайте замечательную книжку Виленкина Н.Я. "За страницами учебника математики")

п.9. Полярное уравнение эллипса, гиперболы и параболы.

Пусть на плоскости дана точка F, которую мы назовем фокусом и прямаяD, которую мы назовем директрисой. Проведем через фокус прямую перпендикулярную директрисе (фокальная ось) и введем полярную систему координат. Полюс поместим в фокус, а в качестве полярного луча возьмем ту часть прямой, которая не пересекает директрису (см. рис.5).

Пусть точка М лежит на эллипсе, гиперболе или параболе. В дальнейшем будем называть зллипс гиперболу или параболу просто кривой.

Теорема. Пусть
полярные координаты точки кривой (эллипса, гиперболы или параболы). Тогда

, (3)

где р – фокальный параметр кривой, – эксцентриситет кривой (для параболы полагаем
).

Доказательство. Пусть Q– проекция точки М на фокальную ось кривой, В – на директрису кривой. Пусть полярный уголточки М является тупым, как на рисунке 5. Тогда

,

где по построению,
– расстояние от точки М до директрисы,и

. (4)

С другой стороны, по единому определению эллипса, гиперболы и параболы отношение

(5)

равно эксцентриситету соответствующей кривой для любой точки М на данной кривой. Пусть точка
– точка пересечения кривой с перпендикуляром к фокальной оси, воостановленного в фокусеFи А – ее проекция на директрису. Тогда

, откуда
. Но
, откуда

и, подставляя в равенство (4), получаем

или, учитывая равенство (5),

откуда и следует доказываемое равенство (3).

Заметим, что равенство (4) остается верным и в случае, когда полярный угол точки М является острым, т.к. в этом случае точкаQнаходится правее фокусаFи

Теорема доказана.

Определение. Уравнение (3) называется полярным уравнением эллипса, гиперболы и параболы.

Занятие 10 . Кривые второго порядка.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Кривыми второго порядка на плоскости называются линии, неявное задание которых имеет вид:

где
- заданные вещественные числа,
- координаты точек кривой. Наиболее важными линиями среди кривых второго порядка являются эллипс, гипербола, парабола.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

Определение эллипса. Эллипсом называется плоская кривая, у которой сумма расстояний от двух фиксированных точек
плоскости до любой точки

(т.е.). Точки
называются фокусами эллипса.

Каноническое уравнение эллипса :
. (2)


(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
(рис.1). Эллипс (2) симметричен относительно осей координат и начала координат (центра эллипса). Постоянные
,
называютсяполуосями эллипса .

Если эллипс задан уравнением (2), то фокусы эллипса находятся так.

1) Сначала определяем, где лежат фокусы: фокусы лежат на той координатной оси, на которой расположены бóльшие полуоси.

2) Затем вычисляется фокусное расстояние (расстояние от фокусов до начала координат).

При
фокусы лежат на оси
;
;
.

При
фокусы лежат на оси
;
;
.

Эксцентриситетом эллипса называется величина:(при
);(при
).

У эллипса всегда
. Эксцентриситет служит характеристикой сжатия эллипса.

Если эллипс (2) переместить так, что центр эллипса попадет в точку

,
, то уравнение полученного эллипса имеет вид

.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

Определение гиперболы. Гиперболой называется плоская кривая, у которой абсолютная величина разности расстояний от двух фиксированных точек
плоскости до любой точки
этой кривой есть постоянная величина, независящая от точки
(т.е.). Точки
называются фокусами гиперболы.

Каноническое уравнение гиперболы :
или
. (3)

Такое уравнение получается, если координатная ось
(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
. Гиперболы (3) симметричны относительно осей координат и начала координат. Постоянные
,
называютсяполуосями гиперболы .

Фокусы гиперболы находятся так.

У гиперболы
фокусы лежат на оси
:
(рис. 2.а).

У гиперболы
фокусы лежат на оси
:
(рис. 2.б)

Здесь - фокусное расстояние (расстояние от фокусов до начала координат). Оно вычисляется по формуле:
.

Эксцентриситетом гиперболы называется величина:

(для
);(для
).

У гиперболы всегда
.

Асимптотами гипербол (3) являются две прямые:
. Обе ветви гиперболы неограниченно приближаются к асимптотам с ростом.

Построение графика гиперболы следует проводить так: сначала по полуосям
строим вспомогательный прямоугольник со сторонами, параллельными осям координат; затем через противоположные вершины этого прямоугольника проводим прямые, это – асимптоты гиперболы; наконец изображаем ветви гиперболы, они касаются середин соответствующих сторон вспомогательного прямоугольника и приближаются с ростомк асимптотам (рис. 2).

Если гиперболы (3) переместить так, что их центр попадет в точку
, а полуоси останутся параллельны осям
,
, то уравнение полученных гипербол запишутся в виде

,
.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Определение параболы. Параболой называется плоская кривая, у которой для любой точки
этой кривой расстояние от
до фиксированной точкиплоскости (называемой фокусом параболы) равно расстоянию от
до фиксированной прямой на плоскости
(называемой директрисой параболы).

Каноническое уравнение параболы :
, (4)

где - постоянная, называемаяпараметром параболы.

Точка
параболы (4) называется вершиной параболы. Ось
является осью симметрии. Фокус параболы (4) находится в точке
, уравнение директрисы
. Графики параболы (4) со значениями
и
приведены на рис. 3.а и 3.б соответственно.

Уравнение
также определяет параболу на плоскости
, у которой по сравнению с параболой (4), оси
,
поменялись местами.

Если параболу (4) переместить так, что ее вершина попадет в точку
, а ось симметрии останется параллельна оси
, то уравнение полученной параболы имеют вид

.

Перейдем к примерам.

Пример 1 . Кривая второго порядка задана уравнением
. Дать название этой кривой. Найти ее фокусы и эксцентриситет. Изобразить кривую и ее фокусы на плоскости
.

Решение. Данная кривая является эллипсом с центром в точке
и полуосями
. В этом легко убедиться, если провести замену
. Это преобразование означает переход от заданной декартовой системы координат
к новой декартовой системе координат
, у которой оси
параллельны осям
,
. Это преобразование координат называется сдвигом системы
в точку. В новой системе координат
уравнение кривой преобразуется в каноническое уравнение эллипса
, его график приведен на рис. 4.

Найдем фокусы.
, поэтому фокусы
эллипса расположены на оси
.. В системе координат
:
. Т.к.
, в старой системе координат
фокусы имеют координаты.

Пример 2 . Дать название кривой второго порядкаи привести ее график.

Решение. Выделим полные квадраты по слагаемым, содержащим переменные и.

Теперь, уравнение кривой можно переписать так:

Следовательно, заданная кривая является эллипсом с центром в точке
и полуосями
. Полученные сведения позволяют нарисовать его график.

Пример 3 . Дать название и привести график линии
.

Решение. . Это – каноническое уравнение эллипса с центром в точке
и полуосями
.

Поскольку,
, делаем заключение: заданное уравнение определяет на плоскости
нижнюю половину эллипса (рис. 5).

Пример 4 . Дать название кривой второго порядка
. Найти ее фокусы, эксцентриситет. Привести график этой кривой.

- каноническое уравнение гиперболы с полуосями
.

Фокусное расстояние.

Знак "минус" стоит перед слагаемым с , поэтому фокусы
гиперболы лежат на оси
:. Ветви гиперболы располагаются над и под осью
.

- эксцентриситет гиперболы.

Асимптоты гиперболы: .

Построение графика этой гиперболы осуществляется в соответствии с изложенным выше порядком действий: строим вспомогательный прямоугольник, проводим асимптоты гиперболы, рисуем ветви гиперболы (см. рис.2.б).

Пример 5 . Выяснить вид кривой, заданной уравнением
и построить ее график.

- гипербола с центром в точке
и полуосями.

Т.к. , заключаем: заданное уравнение определяет ту часть гиперболы, которая лежит Справа от прямой
. Гиперболу лучше нарисовать во вспомогательной системе координат
, полученной из системы координат
сдвигом
, а затем жирной линией выделить нужную часть гиперболы

Пример 6 . Выяснить вид кривойи нарисовать ее график.

Решение. Выделим полный квадрат по слагаемым с переменной :

Перепишем уравнение кривой.

Это – уравнение параболы с вершиной в точке
. Преобразованием сдвигауравнение параболы приводится к каноническому виду
, из которого видно, что- параметр параболы. Фокуспараболы в системе
имеет координаты
,, а в системе
(согласно преобразованию сдвига). График параболы приведен на рис. 7.

Домашнее задание .

1. Нарисовать эллипсы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках эллипсов места расположения их фокусов.

2. Нарисовать гиперболы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках гипербол места расположения их фокусов. Написать уравнения асимптот данных гипербол.

3. Нарисовать параболы, заданные уравнениями:
. Найти их параметр, фокусное расстояние и указать на графиках парабол место расположения фокуса.

4. Уравнение
определяет часть кривой 2-го порядка. Найти каноническое уравнение этой кривой, записать ее название, построить ее график и выделить на нем ту часть кривой, которая отвечает исходному уравнению.

Определение: Параболой называется геометрическое место точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до некоторой фиксированной прямой. Точка F называется фокусом параболы, а фиксированная прямая – директрисой параболы.

Для вывода уравнения построим:

Согласно определению:

Так как у 2 >=0 то парабола лежит в правой полуплоскости. При х возрастающем от 0 до бесконечности
. Парабола симметрична относительно Ох. Точка пересечения параболы со своей осью симметрии называется вершиной параболы.

45. Кривые второго порядка и их классификация. Основная теорема о квп.

Существует 8 типов КВП:

1.эллипсы

2.гиперболы

3.параболы

Кривые 1,2,3 – канонические сечения. Если пересечь конус плоскостью параллельной оси конуса то получим гиперболу. Если плоскостью параллельной образующей то параболу. Все плоскости не проходят через вершину конуса. Если любой другой плоскостью то эллипс.

4.пара параллельных прямых y 2 +a 2 =0, a0

5.пара пересекающихся прямых y 2 -k 2 x 2 =0

6.одна прямая y 2 =0

7.одна точка x 2 + y 2 =0

8.пустое множество - пустая кривая (кр. без точек) x 2 + y 2 +1=0 или x 2 + 1=0

Теорема(основная теорема о КВП): Уравнение вида

a 11 x 2 + 2 a 12 x y + a 22 y 2 + 2 a 1 x + 2 a 2 y + a 0 = 0

может представлять только кривую одного из указанных восьми типов.

Идея доказательства состоит в том чтобы прейти к такой системе координат в которой уравнение КВП примет наиболее простой вид, когда тип кривой, которую оно представляет становится очевидным. Теорема доказывается с помощью поворота системы координат на такой угол при котором член с произведением координат исчезает. И с помощью параллельного переноса системы координат при котором исчезает или член с переменной х или член с переменной у.

Переход к новой системе координат: 1. Параллельный перенос

2. Поворот

45. Поверхности второго порядка и их классификация. Основная теорема о пвп. Поверхности вращения.

ПВП - множество точек прямоугольные координаты которых удовлетворяют уравнению 2 степени: (1)

Предполагается, что хотя бы один из коэффициентов при квадратах или при произведениях отличен от 0. Уравнение инвариантно относительно выбора системы координат.

Теорема Любая плоскость пересекает ПВП по КВП за исключением особого случая, когда в сечении – вся плоскость.(ПВП может быть плоскостью или парой плоскостей).

Существует 15 типов ПВП. Перечислим их указав уравнения, которыми они задаются в подходящих системах координат. Эти уравнения называются каноническими(простейшими). Строят геометрические образы соответствующие каноническим уравнениям методом параллельных сечений: Пересекают поверхность координатными плоскостями и плоскостями параллельными им. В результате получают сечения и кривые, которые дают представление о форме поверхности.

1. Эллипсоид.

Если a=b=c то получаем сферу.

2. Гиперболоиды.

1). Однополостный гиперболоид:

Cечение однополостного гиперболоида координатными плоскостями: XOZ:
- гипербола.

YOZ:
- гипербола.

Плоскостью XOY:
- эллипс.

2). Двуполостной гиперболоид.

Начало координат – точка симметрии.

Координатные плоскости – плоскости симметрии.

Плоскость z = h пересекает гиперболоид по эллипсу
, т.е. плоскость z = h начинает пересекать гиперболоид при | h |  c . Сечение гиперболоида плоскостями x = 0 и y = 0 - это гиперболы.

Числа a,b,c в уравнениях (2),(3),(4) называются полуосями эллипсоидов и гиперболоидов.

3. Параболоиды.

1). Эллиптический параболоид:

Сечение плоскостью z = h есть
, где
. Из уравнения видно, что z  0 – это бесконечная чаша.

Пересечение плоскостями y = h и x = h
- это парабола и вообще

2). Гиперболический параболоид:

Очевидно, плоскости XOZ и YOZ – плоскости симметрии, ось z – ось параболоида. Пересечение параболоида с плоскостью z = h – гиперболы:
,
. Плоскость z =0 пересекает гиперболический параболоид по двум осям
которые являются ассимптотами.

4. Конус и цилиндры второго порядка.

1). Конус – это поверхность
. Конус оюразован прямыми линиями, проходящими через начало координат 0 (0, 0, 0). Сечение конуса – это эллипсы с полуосями
.

2). Цилиндры второго порядка.

Это эллиптический цилиндр
.

Какую бы прямую мы не взяли пересекающую эллипсы и параллельную оси Oz то она удовлетворяет этому уравнению. Перемещая эту прямую вокруг эллипса получим поверхность.

Гиперболический цилиндр:

На плоскости ХОУ это гипербола. Перемещаем прямую пересекающую гиперболу параллельно Oz вдоль гиперболы.

Параболический цилиндр:

На плоскости ХОУ это парабола.

Цилиндрические поверхности образуются прямой(образующей) перемещающейся параллельно самой себе вдоль некоторой прямой(направляющей).

10. Пара пересекающихся плоскостей

11.Пара параллельных плоскостей

12.
- прямой

13.Прямая – «цилиндр», построенный на одной точке

14.Одна точка

15.Пустое множество

Основная теорема о ПВП: Каждая ПВП принадлежит к одному из 15 типов рассмотренных выше. Других ПВП нет.

Поверхности вращения. Пусть задана ПДСК Oxyz и в плоскости Oyz линия е определяемая уравнением F(y,z)=0 (1). Составим уравнение поверхности полученной вращением этой линии вокруг оси Oz. Возьмем на линии е точку М(y,z). При вращении плоскости Oyz вокруг Oz точка М опишет окружность. Пусть N(X,Y,Z) – произвольная точка этой окружности. Ясно что z=Z.

.

Подставив найденные значения z и y в уравнение (1) получим верное равенство:
т.е. координаты точкиN удовлетворяют уравнению
. Таким образом любая точка поверхности вращения удовлетворяет уравнению (2). Не сложно доказать что если точкаN(x 1 ,y 1 ,z 1) удовлетворяет уравнению (2) то она принадлежит рассматриваемой поверхности. Теперь можно сказать что уравнение (2) есть искомое уравнение поверхности вращения.

Остальным же читателям предлагаю существенно пополнить свои школьные знания о параболе и гиперболе. Гипербола и парабола – это просто? …Не дождётесь =)

Гипербола и её каноническое уравнение

Общая структура изложения материала будет напоминать предыдущий параграф. Начнём с общего понятия гиперболы и задачи на её построение.

Каноническое уравнение гиперболы имеет вид , где – положительные действительные числа. Обратите внимание, что в отличие от эллипса , здесь не накладывается условие , то есть, значение «а» может быть и меньше значения «бэ».

Надо сказать, довольно неожиданно… уравнение «школьной» гиперболы и близко не напоминает каноническую запись. Но эта загадка нас ещё подождёт, а пока почешем затылок и вспомним, какими характерными особенностями обладает рассматриваемая кривая? Раскинем на экране своего воображения график функции ….

У гиперболы две симметричные ветви.

Неплохой прогресс! Данными свойствами обладает любая гипербола, и сейчас мы с неподдельным восхищением заглянем в декольте этой линии:

Пример 4

Построить гиперболу, заданную уравнением

Решение : на первом шаге приведём данное уравнение к каноническому виду . Пожалуйста, запомните типовой порядок действий. Справа необходимо получить «единицу», поэтому обе части исходного уравнения делим на 20:

Здесь можно сократить обе дроби, но оптимальнее сделать каждую из них трёхэтажной :

И только после этого провести сокращение:

Выделяем квадраты в знаменателях:

Почему преобразования лучше проводить именно так? Ведь дроби левой части можно сразу сократить и получить . Дело в том, что в рассматриваемом примере немного повезло: число 20 делится и на 4 и на 5. В общем случае такой номер не проходит. Рассмотрим, например, уравнение . Здесь с делимостью всё печальнее и без трёхэтажных дробей уже не обойтись:

Итак, воспользуемся плодом наших трудов – каноническим уравнением :

Как построить гиперболу?

Существует два подхода к построению гиперболы – геометрический и алгебраический.
С практической точки зрения вычерчивание с помощью циркуля... я бы даже сказал утопично, поэтому гораздо выгоднее вновь привлечь на помощь нехитрые расчёты.

Целесообразно придерживаться следующего алгоритма, сначала готовый чертёж, потом комментарии:

На практике часто встречается комбинация поворота на произвольный угол и параллельного переноса гиперболы. Данная ситуация рассматривается на уроке Приведение уравнения линии 2-го порядка к каноническому виду .

Парабола и её каноническое уравнение

Свершилось! Она самая. Готовая раскрыть немало тайн. Каноническое уравнение параболы имеет вид , где – действительное число. Нетрудно заметить, что в своём стандартном положении парабола «лежит на боку» и её вершина находится в начале координат. При этом функция задаёт верхнюю ветвь данной линии, а функция – нижнюю ветвь. Очевидно, что парабола симметрична относительно оси . Собственно, чего париться:

Пример 6

Построить параболу

Решение : вершина известна, найдём дополнительные точки. Уравнение определяет верхнюю дугу параболы, уравнение – нижнюю дугу.

В целях сократить запись вычисления проведём «под одной гребёнкой» :

Для компактной записи результаты можно было свести в таблицу.

Перед тем, как выполнить элементарный поточечный чертёж, сформулируем строгое

определение параболы:

Параболой называется множество всех точек плоскости, равноудалённых от данной точки и данной прямой , не проходящей через точку .

Точка называется фокусом параболы, прямая – директрисой (пишется с одной «эс») параболы. Константа «пэ» канонического уравнения называется фокальным параметром , который равен расстоянию от фокуса до директрисы. В данном случае . При этом фокус имеет координаты , а директриса задаётся уравнением .
В нашем примере :

Определение параболы понимается ещё проще, чем определения эллипса и гиперболы. Для любой точки параболы длина отрезка (расстояние от фокуса до точки) равна длине перпендикуляра (расстоянию от точки до директрисы):

Поздравляю! Многие из вас сегодня сделали самое настоящие открытие. Оказывается, гипербола и парабола вовсе не являются графиками «рядовых» функций, а имеют ярко выраженное геометрическое происхождение.

Очевидно, что при увеличении фокального параметра ветви графика будут «раздаваться» вверх и вниз, бесконечно близко приближаясь к оси . При уменьшении же значения «пэ» они начнут сжиматься и вытягиваться вдоль оси

Эксцентриситет любой параболы равен единице:

Поворот и параллельный перенос параболы

Парабола – одна из самых распространённых линий в математике, и строить её придётся действительно часто. Поэтому, пожалуйста, особенно внимательно отнестись к заключительному параграфу урока, где я разберу типовые варианты расположения данной кривой.

! Примечание : как и в случаях с предыдущими кривыми, корректнее говорить о повороте и параллельном переносе координатных осей, но автор ограничится упрощённым вариантом изложения, чтобы у читателя сложились элементарные представления о данных преобразованиях.