Семья

Решение простых неравенств примеры с решением. Что такое решение неравенства? Учитель выступает в роли консультанта

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Урок и презентация на тему: "Примеры линейных неравенств и их решение"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Образовательный комплекс 1C: "Алгебраические задачи с параметрами, 9–11 классы" Программная среда "1С: Математический конструктор 6.1"

Линейные уравнения (повторение)

Ребята, мы переходим к изучению курса алгебры за 9 класс. Во время изучения нашего курса мы научимся решать много новых увлекательных задач.

Давайте немного повторим.
Вы помните, что такое линейное уравнение?
Мы называем уравнение вида $ax+b=0$ - линейным, здесь коэффициенты а и b из множества действительных чисел, то есть практически любое число. Кстати, а почему оно называется линейным? Правильно, если нарисуем график решения нашего уравнения, то получается линия.

Как мы решали наше уравнение? То, что с х, мы оставляли слева от знака равно, а без х переносили на право, не забывая менять знак, то есть получали уравнение вида: $ax=-b$.
После делили на коэффициент при х и получали решение уравнения: $x=-\frac{b}{a}$.
Ну что же, давайте перейдем к первой теме нашего курса.

Мы с вами вспомнили линейные уравнения, теперь давайте введем понятие линейного неравенства. Думаю вы догадались, что определения не будут сильно отличаться.
Линейным неравенством с одной переменной называют неравенства вот такого вида: $ax+b>0$, где а и b значения из множества действительных чисел $(a≠0)$. Вообще можно записать 4 вида неравенств :
$ax+b>0\\ ax+b
Значения переменной x, при котором наше неравенство становится верно - называется решением. Стоит заметить, что существует два вида решений: частное и общее. Общим решением называют все множество частных решений.

Давайте введем несколько правил при решении линейных неравенств:
Члены неравенства можно так же, как и в линейных уравнениях переносить из одно части в другую, не меняя знак неравенства.
Неравенство $3х
Неравенство можно умножить и разделить на одно и тоже число большее нуля, не изменив при этом знак неравенства. Ребята, не забывайте что обязательно надо умножать или делить обе части неравенства!
Неравенство $3x
Неравенство можно умножить или разделить на отрицательное число, не забыв при этом изменить знак неравенства на противоположный. Знак, ≤ на≥, и соответственно наоборот.
Умножим неравенство $3x-7 0$.

Если неравенство от переменой x разделить или умножить на выражение $p(x)$, зависящее от х, и которое положительно при любом х, не изменив знак неравенства, то получится неравенство, равносильное изначальному.

Если неравенство от переменой x разделить или умножить на выражение $p(x)$, зависящее от х, b которое отрицательно при любом х, поменяв знак неравенства, то получится неравенство, равносильное изначальному.

1. Решить неравенство: $3x-6
Решение:
Способ решения аналогичен линейным уравнениям, перенесем -6 направо от знака неравенства $3x Мы можем разделить наше неравенство на любое положительное число, не меняя знака. Давайте раздели на 3 и получим решение: $x Ответ: $x
2. Решить неравенство: $-3x+6
Решение:
Выполним начальные действия: $-3x Разделим неравенство на -3, не забыв изменить знак: $x>2$.
Ответ: $x>2$.

3. Решить неравенство: $\frac{x}{4}+\frac{(3x-2)}{8}>x-\frac{1}{16}$.

Решение:
Умножим наше неравенство на 16, получаем: $4x+2(3x-2)>16x-1$.
Выполним необходимые действия: $4x+6x-4-16x>-1$.
$-6x>3$.
Разделим неравенство на -6, поменяв его знак: $x Ответ: $x
4. Решить неравенство: $|2x-2|
Решение:
Разделим неравенство на 2. Получим: $|x-1| Решением нашего неравенство можно представить в виде отрезка координатной прямой. Середина отрезка будет находиться в точке $x=1$, а границы удалены на 2.
Нарисуем наш отрезок:
Открытый интервал $(-1;3)$ – решение нашего неравенства.

Задачи на линейные неравенства

1. Решить неравенство:
a) $2x+5 b) $-4x-9>11.$
c) $-5x+10
2. Решить неравенство: $\frac{2x}{9}+\frac{2x-4}{3}≤x-\frac{1}{18}$.

3. Решить неравенство:
$a) |3x-5| b) $|5x|

Сравнивать величины и количества при решении практических задач приходилось ещё с древних времён. Тогда же появились и такие слова, как больше и меньше, выше и ниже, легче и тяжелее, тише и громче, дешевле и дороже и т.д., обозначающие результаты сравнения однородных величин.

Понятия больше и меньше возникли в связи со счётом предметов, измерением и сравнением величин. Например, математики Древней Греции знали, что сторона любого треугольника меньше суммы двух других сторон и что против большего угла в треугольнике лежит большая сторона. Архимед, занимаясь вычислением длины окружности, установил, что периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых диаметра.

Символически записывать соотношения между числами и величинами с помощью знаков > и b. Записи, в которых два числа соединены одним из знаков: > (больше), С числовыми неравенствами вы встречались и в младших классах. Знаете, что неравенства могут быть верными, а могут быть и неверными. Например, \(\frac{1}{2} > \frac{1}{3} \) верное числовое неравенство, 0,23 > 0,235 - неверное числовое неравенство.

Неравенства, в которые входят неизвестные, могут быть верными при одних значениях неизвестных и неверными при других. Например, неравенство 2x+1>5 верное при х = 3, а при х = -3 - неверное. Для неравенства с одним неизвестным можно поставить задачу: решить неравенство. Задачи решения неравенств на практике ставятся и решаются не реже, чем задачи решения уравнений. Например, многие экономические проблемы сводятся к исследованию и решению систем линейных неравенств. Во многих разделах математики неравенства встречаются чаще, чем уравнения.

Некоторые неравенства служат единственным вспомогательным средством, позволяющим доказать или опровергнуть существование определённого объекта, например, корня уравнения.

Числовые неравенства

Вы умеете сравнивать целые числа, десятичные дроби. Знаете правила сравнения обыкновенных дробей с одинаковыми знаменателями, но разными числителями; с одинаковыми числителями, но разными знаменателями. Здесь вы научитесь сравнивать любые два числа с помощью нахождения знака их разности.

Сравнение чисел широко применяется на практике. Например, экономист сравнивает плановые показатели с фактическими, врач сравнивает температуру больного с нормальной, токарь сравнивает размеры вытачиваемой детали с эталоном. Во всех таких случаях сравниваются некоторые числа. В результате сравнения чисел возникают числовые неравенства.

Определение. Число а больше числа b, если разность а-b положительна. Число а меньше числа b, если разность а-b отрицательна.

Если а больше b, то пишут: а > b; если а меньше b, то пишут: а Таким образом, неравенство а > b означает, что разность а - b положительна, т.е. а - b > 0. Неравенство а Для любых двух чисел а и b из следующих трёх соотношений a > b, a = b, a Сравнить числа а и b - значит выяснить, какой из знаков >, = или Теорема. Если a > b и Ь > с, то а > с.

Теорема. Если к обеим частям неравенства прибавить одно и то же число, то знак неравенства не изменится.
Следствие. Любое слагаемое можно перенести из одной части неравенства в другую, изменив знак этого слагаемого на противоположный.

Теорема. Если обе части неравенства умножить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.
Следствие. Если обе части неравенства разделить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства разделить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.

Вы знаете, что числовые равенства можно почленно складывать и умножать. Далее вы научитесь выполнять аналогичные действия с неравенствами. Умения почленно складывать и умножать неравенства часто применяются на практике. Эти действия помогают решать задачи оценивания и сравнения значений выражений.

При решении различных задач часто приходится складывать или умножать почленно левые и правые части неравенств. При этом иногда говорят, что неравенства складываются или умножаются. Например, если турист прошёл в первый день более 20 км, а во второй - более 25 км, то можно утверждать, что за два дня он прошёл более 45 км. Точно так же если длина прямоугольника меньше 13 см, а ширина меньше 5 см, то можно утверждать, что площадь этого прямоугольника меньше 65 см2.

При рассмотрении этих примеров применялись следующие теоремы о сложении и умножении неравенств:

Теорема. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то a + c > b + d.

Теорема. При умножении неравенств одинакового знака, у которых левые и правые части положительны, получается неравенство того же знака: если а > b, c > d и а, b, с, d - положительные числа, то ac > bd.

Неравенства со знаком > (больше) и 1/2, 3/4 b, c Наряду со знаками строгих неравенств > и Точно так же неравенство \(a \geq b \) означает, что число а больше или равно b, т. е. а не меньше b.

Неравенства, содержащие знак \(\geq \) или знак \(\leq \), называют нестрогими. Например, \(18 \geq 12 , \; 11 \leq 12 \) - нестрогие неравенства.

Все свойства строгих неравенств справедливы и для нестрогих неравенств. При этом если для строгих неравенств противоположными считались знаки > и Вы знаете, что для решения ряда прикладных задач приходится составлять математическую модель в виде уравнения или системы уравнений. Далее вы узнаете, что математическими моделями для решения многих задач являются неравенства с неизвестными. Будет введено понятие решения неравенства и показано, как проверить, является ли данное число решением конкретного неравенства.

Неравенства вида
\(ax > b, \quad ax в которых а и b - заданные числа, а x - неизвестное, называют линейными неравенствами с одним неизвестным .

Определение. Решением неравенства с одним неизвестным называется то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство. Решить неравенство - это значит найти все его решения или установить, что их нет.

Решение уравнений вы осуществляли путём приведения их к простейшим уравнениям. Аналогично при решении неравенств их стремятся с помощью свойств привести к виду простейших неравенств.

Решение неравенств второй степени с одной переменной

Неравенства вида
\(ax^2+bx+c >0 \) и \(ax^2+bx+c где x - переменная, a, b и c - некоторые числа и \(a \neq 0 \), называют неравенствами второй степени с одной переменной .

Решение неравенства
\(ax^2+bx+c >0 \) или \(ax^2+bx+c можно рассматривать как нахождение промежутков, в которых функция \(y= ax^2+bx+c \) принимает положительные или отрицательные значения. Для этого достаточно проанализировать, как расположен график функции \(y= ax^2+bx+c \) в координатной плоскости: куда направлены ветви параболы - вверх или вниз, пересекает ли парабола ось x и если пересекает, то в каких точках.

Алгоритм решения неравенств второй степени с одной переменной:
1) находят дискриминант квадратного трехчлена \(ax^2+bx+c \) и выясняют, имеет ли трехчлен корни;
2) если трехчлен имеет корни, то отмечают их на оси x и через отмеченные точки проводят схематически параболу, ветви которой направлены вверх при a > 0 или вниз при a 0 или в нижней при a 3) находят на оси x промежутки, для которых точки параболы расположены выше оси x (если решают неравенство \(ax^2+bx+c >0 \)) или ниже оси x (если решают неравенство
\(ax^2+bx+c Решение неравенств методом интервалов

Рассмотрим функцию
f(x) = (х + 2)(х - 3)(х - 5)

Областью определения этой функции является множество всех чисел. Нулями функции служат числа -2, 3, 5. Они разбивают область определения функции на промежутки \((-\infty; -2), \; (-2; 3), \; (3; 5) \) и \((5; +\infty) \)

Выясним, каковы знаки этой функции в каждом из указанных промежутков.

Выражение (х + 2)(х - 3)(х - 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:

Вообще пусть функция задана формулой
f(x) = (x-x 1)(x-x 2) ... (x-x n),
где x–переменная, а x 1 , x 2 , ..., x n – не равные друг другу числа. Числа x 1 , x 2 , ..., x n являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.

Это свойство используется для решения неравенств вида
(x-x 1)(x-x 2) ... (x-x n) > 0,
(x-x 1)(x-x 2) ... (x-x n) где x 1 , x 2 , ..., x n - не равные друг другу числа

Рассмотренный способ решения неравенств называют методом интервалов.

Приведем примеры решения неравенств методом интервалов.

Решить неравенство:

\(x(0,5-x)(x+4) Очевидно, что нулями функции f(x) = x(0,5-x)(x+4) являются точки \(x=0, \; x=\frac{1}{2} , \; x=-4 \)

Наносим на числовую ось нули функции и вычисляем знак на каждом промежутке:

Выбираем те промежутки, на которых функция меньше или равна нулю и записываем ответ.

Ответ:
\(x \in \left(-\infty; \; 1 \right) \cup \left[ 4; \; +\infty \right) \)

§ 1 Линейные неравенства

На этом занятии мы познакомимся с определением линейного неравенства. Рассмотрим свойства, используемые при решении линейных неравенств. Научимся решать линейные неравенства.

Линейным неравенствомназывают неравенства вида aх+ b > 0 или aх+ b < 0, где переменная или искомая величина, a и b- некоторые числа, причем a ≠ 0.

Так как неравенство может быть строгим и нестрогим, то линейные неравенства могут иметь следующий вид aх+ b ≥0, aх+ b ≤ 0.

Неравенство является линейным, так как х входит в неравенство в первой степени.

Решением линейного неравенства является значение переменной х, при котором неравенство обращается в верное числовое неравенство.

Возьмем неравенство 2х+5 > 0.

Подставим вместо х значение нуль. Получим 5 > 0. Это верное неравенство. Значит, х=0, является решением неравенства 2х+5>0.

Подставив вместо х значение -2,5, получим 0 > 0. Это неверное неравенство. Следовательно, х= -2,5 не является решением линейного неравенства 2х + 5>0. Подбирая значения х, можно найти еще несколько частных решений.

Найти все решения или доказать, что неравенство не имеет решений, означает решить линейное неравенство.

Неравенства, которые имеют одни и те же решения, называются равносильными.

При решении неравенств используют правила, применяя которые можно получить более простые для решения равносильные неравенства.

§ 2 Примеры решения линейных неравенств

Решим неравенство 2х+5>0. И первое правило, которое здесь можно использовать: если член неравенства перенести из одной части неравенства в другую с противоположным знаком, не изменив при этом знак неравенства, то получим равносильное неравенство.

Разделим обе части неравенства на 2. Получим х > -2,5.

Ответ можно записать так: х > -2,5 или в виде числового промежутка

Результатом является положительно-направленный открытый луч.

Открытый, так как наше неравенство строгое, а значит, число -2,5 не включается в числовой промежуток.

Решим другое линейное неравенство 3х - 3 ≥ 7х - 15.

Так же, как при решении линейных уравнений, слагаемые с х перенесем влево, а числовые слагаемые - вправо. Не забудем при переносе поменять знаки слагаемых на противоположные. Исходя из первого правила, знак неравенства при этом не меняется.

Получим 3х - 7х ≥ -15 + 3 или -4х ≥ -12.

Далее используем третье правило: если обе части неравенства умножить или разделить на одно и то жеотрицательное число, изменив при этом знак неравенства на противоположный, то получим равносильное неравенство.

Разделим обе части неравенства на -4.

Получим х ≤ 3.

Покажем решение на оси х.

Результатом является отрицательно-направленный закрытый луч. Закрытый, так как наше неравенство нестрогое, а значит, число 3 включается в числовой промежуток.

Рассмотрим решение более сложного линейного неравенства

Используя второе правило, обе части неравенства умножим на число 15. Число 15 будет общим знаменателем дробей.

Умножим числители на дополнительные множители.

Получим неравенство 5х + 6х - 3 > 30х.

Используя правило один, перенесем слагаемые с х влево, числовые слагаемые - вправо, поменяв знаки при переносе на противоположные.

Получим -19х > 3.

Применим правило три, разделим обе части неравенства на -19. В этом случае надо поменять знак неравенства на противоположный знак.

Покажем решение на оси х.

Результатом является открытый луч, потому что неравенство строгое, а значит, число не включается в числовой промежуток. Это отрицательно-направленный луч.

Решим следующее неравенство

Обе части неравенства умножим на 4.

Получим 5 - 2х ≤ 8х. Перенесем слагаемые с х влево, числовые слагаемые - вправо

2х - 8х ≤ -5 или -10х ≤-5.

Разделим обе части неравенства на -10. Это число отрицательное, по правилу 3 необходимо поменять знак неравенства на противоположный.

Получим х≥0,5.

Покажем решение на оси х.

Результатом является закрытый луч, так как неравенство нестрогое, а значит, число 0,5 включается в числовой промежуток. Это положительно-направленный луч.

При решении неравенств после преобразований может получиться так, что коэффициент при х равен нулю, например, 0∙х> b (или 0∙х< b). Такое неравенство не имеет решений или решением является любое число.

Решим неравенство 2(х + 8) -5х < 4-3х.

Раскроем скобки 2х + 16 - 5х < 4 - 3х.

Используя свойство один, перенесем слагаемые с х влево, а числа- вправо, получим 0∙х < -12. При любом значении х неравенство обращается в неравенство 0 < -12. Это неверное неравенство.

Ответ: нет решения или пустое множество.

Решим другое неравенство х > х - 1.

Перенесем х справа налево, получим 0∙х > -1. При любом значении х неравенство обращается в неравенство 0 > -1. Это верное неравенство.

§ 3 Краткий итог урока

Важно запомнить:

Линейным неравенством называют неравенство вида aх+ b > 0 (или aх+ b < 0, aх+ b ≥ 0, aх+ b≤ 0), где х - переменная, a и b- некоторые числа, причем a≠0.

Решить неравенство - значит найти все его решения или доказать, что решений нет.

При решении линейных неравенств используют правила, позволяющие заменить данное неравенство на более простые для решения равносильные ему неравенства:

1) если член неравенства перенести из одной части неравенства в другую с противоположным знаком, не изменив при этом знак неравенства, то получим равносильное неравенство;

2)если обе части неравенства умножить или разделить на одно и то же положительное число, не изменив при этом знак неравенства, то получим равносильное неравенство;

3) если обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получим равносильное неравенство.

Целью применения этих правил является приведение линейного неравенства к виду х > b/a или х < b/a.

Решением линейного неравенства является числовой промежуток. Это может быть открытый или закрытый числовой луч, который может быть как

положительно-направленным, так и отрицательно-направленным.

Список использованной литературы:

  1. Макарычев Ю.Н., Н.Г. Миндюк, Нешков К.И., Суворова С.Б., под редакцией Теляковского С.А. Алгебра: учебн. для 8 кл. общеобразоват. учреждений. - М.: Просвещение, 2013.
  2. Мордкович А.Г. Алгебра. 8 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. - М.: Мнемозина.
  3. Рурукин А.Н. Поурочные разработки по алгебре: 8 класс.- М.: ВАКО, 2010.
  4. Алгебра 8 класс: поурочные планы по учебнику Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова, С.Б. Суворовой / Авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. -Волгоград: Учитель, 2005.

Неравенство это выражение с, ≤, или ≥. Например, 3x - 5 Решить неравенство означает найти все значения переменных, при которых это неравенство верно. Каждое из этих чисел является решением неравенства, а множество всех таких решений является его множеством решений . Неравенства, которые имеют то же множество решений, называются эквивалентными неравенствами .

Линейные неравенства

Принципы решения неравенств аналогичны принципам решения уравнений.

Принципы решения неравенств
Для любых вещественных чисел a, b, и c :
Принцип прибавления неравенств : Если a Принцип умножения для неравенств : Если a 0 верно, тогда ac Если a bc также верно.
Подобные утверждения также применяются для a ≤ b.

Когда обе стороны неравенства умножаются на отрицательное число, необходимо полностью изменить знак неравенства.
Неравенства первого уровня, как в примере 1 (ниже), называются линейными неравенствами .

Пример 1 Решите каждое из следующих неравенств. Затем изобразите множество решений.
a) 3x - 5 b) 13 - 7x ≥ 10x - 4
Решение
Любое число, меньше чем 11/5, является решением.
Множество решений есть {x|x
Чтобы сделать проверку, мы можем нарисовать график y 1 = 3x - 5 и y 2 = 6 - 2x. Тогда отсюда видно, что для x
Множеством решений есть {x|x ≤ 1}, или (-∞, 1]. График множества решений изображён ниже.

Двойные неравенства

Когда два неравенства соединены словом и , или , тогда формируется двойное неравенство . Двойное неравенство, как
-3 и 2x + 5 ≤ 7
называется соединённым , потому что в нём использовано и . Запись -3 Двойные неравенства могут быть решены с использованием принципов прибавления и умножения неравенств.

Пример 2 Решите -3 Решение У нас есть

Множество решений {x|x ≤ -1 или x > 3}. Мы можем также написать решение с использованием обозначения интервала и символ для объединения или включения обоих множеств: (-∞ -1] (3, ∞). График множества решений изображен ниже.

Для проверки, нарисуем y 1 = 2x - 5, y 2 = -7, и y 3 = 1. Заметьте, что для {x|x ≤ -1 или x > 3}, y 1 ≤ y 2 или y 1 > y 3 .

Неравенства с абсолютным значением (модулем)

Неравенства иногда содержат модули. Следующие свойства используются для их решения.
Для а > 0 и алгебраического выражения x:
|x| |x| > a эквивалентно x или x > a.
Подобные утверждения и для |x| ≤ a и |x| ≥ a.

Например,
|x| |y| ≥ 1 эквивалентно y ≤ -1 или y ≥ 1;
и |2x + 3| ≤ 4 эквивалентно -4 ≤ 2x + 3 ≤ 4.

Пример 4 Решите каждое из следующих неравенств. Постройте график множества решений.
a) |3x + 2| b) |5 - 2x| ≥ 1

Решение
a) |3x + 2|

Множеством решением есть {x|-7/3
b) |5 - 2x| ≥ 1
Множеством решением есть {x|x ≤ 2 или x ≥ 3}, или (-∞, 2] }