Семья

Контрольная работа структурные уровни организации материи. Контрольная работа: Структурные уровни организации материи Три уровня организации материи

В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее составные части, организованные в целостность. Для обозначения целостности объектов в науке было выработано понятие "системы.

Система представляет собой совокупность элементов и связей между ними.

Понятие «элемент» означает минимальный, далее неделимый компонент в рамках системы. Элемент является таковым лишь по отношению к данной системе, в других же отношениях он сам может представлять сложную систему.

Совокупность связей между элементами образует структуру системы.

Устойчивые связи элементов определяют упорядоченность системы. Существуют два типа связей между элементами системы: по «горизонтали» и по «вертикали».

Связи по «горизонтали» - это связи координации между однопорядко-выми элементами. Они носят коррелирующий характер: ни одна часть системы не может измениться без того, чтобы не изменились другие части.

Связи по «вертикали» - это связи субординации, т.е. соподчинения элементов. Они выражают сложное внутреннее устройство системы, где одни части по своей значимости могут уступать другим и подчиняться им. Вертикальная структура включает уровни организации системы, а также их иерархию.

Исходным пунктом всякого системного исследования является представление о целостности изучаемой системы.

Целостность системы означает, что все ее составные части, соединяясь вместе, образуют уникальное целое, обладающее новыми интегративными свойствами.

Свойства системы - не просто сумма свойств ее элементов, а нечто новое, присущее только системе в целом. Например, молекула воды Н 2 О. Сам по себе водород, два атома которого образуют данную систему, горит, а кислород (в нее входит один атом) поддерживает горение. Система же, образовавшаяся из этих элементов, вызвала к жизни совсем иное, а именно, ин-тегративное свойство: вода гасит огонь. Наличие свойств, присущих системе в целом, но не ее частям, определяется взаимодействием элементов.


Итак, согласно современным научным взглядам на природу, все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы. Все системы делятся на закрытые, в которых отсутствуют связи с внешней средой, и открытые, связанные с внешней окружающей средой.

Закрытой система может быть только теоретически, реальные природные объекты существуют во внешней среде, обмениваясь с ней веществом, энергией и информацией. Любой материальный объект от атома и клетки до галактики входит в систему более высокого уровня и может существовать только во взаимодействии с окружающей средой.

В естественных науках выделяются два больших класса материальных систем: системы неживой природы и системы живой природы.

В неживой природе в качестве структурных уровней организации материи выделяют физический вакуум, элементарные частицы, атомы, молекулы, поля, макроскопические тела, планеты и планетные системы, звезды и звездные системы - галактики, системы галактик - метагалактику.

В живой природе к структурным уровням организации материи относят системы доклеточного уровня - нуклеиновые кислоты и белки; клетки как особый уровень биологической организации, представленные в форме одноклеточных организмов и элементарных единиц живого вещества; многоклеточные организмы растительного и животного мира; надорганизменные структуры, включающие виды, популяции и биоценозы и, наконец, биосферу как всю массу живого вещества.


В природе все взаимосвязано, поэтому можно выделить такие системы, которые включают элементы как живой, так и неживой природы - биогеоценозы.

Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта.

Применяя системный подход, естествознание не просто выделяет типы материальных систем, а раскрывает их связь и соотношение.

В науке выделяются три уровня строения материи.

Макромир - мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Микромир - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная размерность которых исчисляется от 10 - 8 до 10 -16 см, а время жизни - от бесконечности до 10 -24 с.

Мегамир - мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро- и мегамиры теснейшим образом взаимосвязаны.

В настоящее время в области фундаментальной теоретической физики разрабатываются концепции, согласно которым объективно существующий мир не исчерпывается материальным миром, воспринимаемым нашими органами чувств или физическими приборами. Авторы данных концепций пришли к следующему выводу: наряду с материальным миром существует реальность высшего порядка, обладающая принципиально иной природой по сравнению с реальностью материального мира 1 . С их точки зрения, мир высшей реальности определяет структуру и эволю цию материального мира. Утверждается, что объектами мира высшей реальности выступают не материальные системы, как в микро-, макро- и мегамирах, а некие идеальные физические и математические структуры, которые проявляются в материальном мире в виде естественно-научных законов. Эти структуры выступают как носители идей необходимости, общезначимости и регулярности, которые выражают сущность объективных физических законов.

Но одних законов, порожденных такого рода физическими и математическими структурами, явно недостаточно для существования материального мира. Необходимо множество программ, определяющих «поведе-

Владимиров Ю.С. Фундаментальная физика и религия. - М.: Архимед, 1993; Владимиров Ю.С., Карнаухов А.В., Кулаков Ю.И. Введение в теорию физических структур и бинарную геометрофизику. - М.: Архимед, 1993.


ние» и эволюцию материальных объектов. Подобно тому как знание уравнений не обеспечивает решения задачи (для этого нужно еще и знание начальных условий), так и в общем случае наряду с фундаментальными законами должны существовать дополнительные к ним сущности - программы.

С точки зрения указанного подхода каждая материальная система является воплощением некоторой идеальной структуры, а ее эволюция определяется некой программой. Программа предполагает определенную направленность развития, т.е. его цель. Поскольку никакая программа не может возникнуть сама по себе, а является продуктом творческого акта, то, как считают некоторые физики-теоретики, Вселенной присущ творческий Разум. С их точки зрения, материальный мир есть лишь самый «нижний» слой бытия, взаимодействующий со всеми другими слоями и определяемый ими.

Над миром материальных объектов возвышаются:

Этаж идеальных физических и математических структур, задающих фундаментальные законы природы;

Этаж многочисленных программ, определяющих эволюцию Вселенной в целом и материальных систем в частности;

Этаж духовного мира человека - мира духовной свободы. Вершиной в иерархической структуре Вселенной является Высший Разум как трансцендентное, т.е. сверхчувственное, сверхличностное Первоначало всего мироздания, возвышающееся над природой и человеком 1 .

Такой подход противоречит строго научному знанию и представляет по своей сути проявление религиозного мировоззрения.

КОНТРОЛЬНАЯ РАБОТА

по дисциплине концепции современного естествознания

Тема №9
«Структурные уровни организации материи»

План:
Введение………………………………………………………… ….……………..2

    Роль системных представлений в анализе структурных уровней организации материи……………….……………………………………2
    Структурные уровни живого……………………………………………..6
    Сущность макромира, микромира и мегамира………………………….7
    Микромир…………………………………………………..… …………..8
    Макромир…………………………………………………..… …………11
    Мегамир…………………………………………………………… ……12
    Анализ классического и современного понимания концепции макромира……………………………………………………… …….…13
Заключение…………………………………………………… …….…………..17

Введение.
Все объекты природы (живой и неживой природы) можно представить в виде системы, обладающей особенностями, характеризующей их уровни организации. Концепция структурных уровней живой материи включает представления системности и связанной с ней организацией целостности живых организмов. Живая материя дискретна, т.е. делится на составные части более низкой организации, имеющие определенные функции.
Структурные уровни различаются не только классами сложности, но и по закономерности функционирования. Иерархическая структура такова, что каждый высший уровень не управляет, а включает низший. С учетом уровня организации можно рассматривать иерархию структур организации материальных объектов живой и неживой природы. Такая иерархия структур начинается с элементарных частиц и заканчивается живыми сообществами. Концепция структурных уровней впервые была предложена в 20-х годах нашего столетия. В соответствии с ней структурные уровни различаются не только по классам сложностью, но по закономерностям функционирования. Концепция включает в себя иерархию структурных уровней, в которой каждый следующий уровень входит в предыдущий.

    Роль системных представлений в анализе структурных уровней организации материи.
Весь окружающий нас мир представляет собой движущуюся материю в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями. Рассмотрим подробнее, что же такое материя, а так же ее структурные уровни.
Материя (лат. Materia – вещество), «…философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от нас».
Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. Материя включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все те, которые в принципе могут быть познаны в будущем на основе совершенствования средств наблюдения и эксперимента.
В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира (атом, организм, галактика и сама Вселенная) может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность.
Основные принципы системного подхода:
    Целостность, позволяющая рассматривать одновременно систему как единое целое и в то же время как подсистему для вышестоящих уровней.
    Иерархичность строения, то есть наличие множества (по крайней мере, двух) элементов, расположенных на основе подчинения элементов низшего уровня элементам высшего уровня. Реализация этого принципа хорошо видна на примере любой конкретной организации. Как известно, любая организация представляет собой взаимодействие двух подсистем: управляющей и управляемой. Одна подчиняется другой.
    Структуризация, позволяющая анализировать элементы системы и их взаимосвязи в рамках конкретной организационной структуры. Как правило, процесс функционирования системы обусловлен не столько свойствами её отдельных элементов, сколько свойствами самой структуры.
    Множественность, позволяющая использовать множество кибернетических, экономических и математических моделей для описания отдельных элементов и системы в целом.
Системность, свойство объекта обладать всеми признаками системы.
Для обозначения целостности объектов в науке было выработано понятие «система».
Система - это комплекс элементов, находящихся во взаимодействии. В переводе с греческого это целое, составленное из частей, соединение.
Понятие «элемент» означает минимальный, далее уже неделимый компонент в рамках данной системы. Система может состоять не только из однородных объектов, но и разнородных. Она может быть по своему строению простой и сложной. Сложная система состоит из элементов, которые в свою очередь образуют подсистемы разного уровня сложности и иерархии.
Каждая система характеризуется не только наличием связей и отношений между образующими ее элементами, но и неразрывным единством с окружающей средой.
Можно выделить различные типы систем:
    по характеру связи между частями и целым - неорганические и органические;
    по формам движения материи - механические, физические, химические, физико-химические;
    по отношению к движению - статистические и динамические;
    по видам изменений - нефункциональные, функциональные, развивающиеся;
    по характеру обмена со средой - открытые и закрытые;
    по степени организации - простые и сложные;
    по уровню развития - низшие и высшие;
    по характеру происхождения - естественные, искусственные, смешанные;
    по направлению развития - прогрессивные и регрессивные.
Совокупность связей между элементами образует структуру системы.
Устойчивые связи элементов определяют упорядоченность системы. Существуют два типа связей между элементами системы – по «горизонтали» и по «вертикали».
Связи по «горизонтали» - это связи координации между однопорядковыми элементами. Они носят коррелирующий характер: ни одна часть системы не может изменяться без того, чтобы не изменились другие части.
Связи по «вертикали» - это связи субординации, то есть соподчинения элементов. Они выражают сложное внутреннее устройство системы, где одни части по своей значимости могут уступать другим и подчиняться им. Вертикальная структура включает уровни организации системы, а так же их иерархию.
Следовательно, исходным пунктом всякого системного исследования является представление именно о целостности изучаемой системы.
Целостность системы означает, что все составные части, взаимодействуя и соединяясь вместе, образуют уникальное целое, обладающее новыми системными свойствами.
Свойства системы – не просто сумма свойств ее элементов, а нечто новое, присущее только системе в целом.
Итак, согласно современным научным взглядам на природу, все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы.
В естественных науках выделяют два больших класса материальных систем: системы неживой природы и системы живой природы.
К системам неживой природы относятся элементарные частицы и поля, физический вакуум, атомы, молекулы, макроскопические тела, планеты и планетные системы, звезды, галактики и система галактик – Метагалактика.
К системам живой природы относятся биополимеры (информационные молекулы), клетки, многоклеточные организмы, популяции, биоценозы и биосфера как совокупность всех живых организмов.
В природе все взаимосвязано, поэтому можно выделить и такие системы, которые включают в себя элементы как живой, так и неживой природы – биогеоценозы, и биосферу Земли.
    Структурные уровни живого.
Структурный, или системный, анализ обнаруживает, что мир живого чрезвычайно многообразен, имеет сложную структуру. На основе равных критериев могут быть выделены различные уровни, или подсистемы, живого мира. Наиболее распространенным является выделение на основе критерия масштабности следующих уровней организации живого.
Биосферный – включающий всю совокупность живых организмов Земли вместе с окружающей их природной средой. На этом уровне биологической наукой решается такая проблема, как изменение концентрации углекислого газа в атмосфере. Используя это подход, ученые выяснили, что в последнее время концентрация углекислого раза возрастает ежегодно на 0,4%, создавая опасность глобального повышения температуры, возникновения так называемого «парникового эффекта».
Уровень биоценозов выражает следующую ступень структуры живого, состоящую из участков Земли с определенным составом живых и неживых компонентов, представляющих единый природный комплекс, экосистему. Рациональное использование природы невозможно без знания структуры и функционирования биогеоценозов, или экосистем.
Популяционно-видовой уровень образуется свободно скрещивающимися между собой особями одного и того же вида. Его изучение важно для выявления факторов, влияющих на численность популяций.
Организменный и органно-тканевый уровни отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живых существ.
Клеточный и субклеточный уровниотражают процессы специализации клеток, а также различные внутриклеточные включения.
Молекулярный уровень составляет предмет молекулярной биологии, одной из важнейших проблем которой является изучение механизмов передачи генной информации и развитие генной инженерии и биотехнологии.
Разделение живой материи на уровни является, конечно, весьма условным. Решение конкретных биологических проблем, таких, как регуляция численности вида, опирается на данные о всех уровнях живого. Но все биологи согласны в том, что в мире живого существуют ступенчатые уровни, своего рода иерархии. Представление о них наглядно отражает системный подход в изучении природы, который помогает глубже понять ее.
Фундаментальной основой живого мира, является клетка. Ее исследование помогает уяснить специфику всего живого.
    Сущность макромира, микромира и мегамира.
Структурные уровни материи образованы из определенного множества объектов какого-либо класса и характеризуются особым типом взаимодействия между составляющими их элементами.
Критерием для выделения различных структурных уровней служат следующие признаки:
    пространственно-временные масштабы;
    совокупность важнейших свойств;
    специфические законы движения;
    степень относительной сложности, возникающей в процессе исторического развития материи в данной области мира;
    некоторые другие признаки.
Все объекты, которые исследует наука, относятся к трем «мирам» (микромир, макромир и мегамир), которые и представляют собой уровни организации материи.


Микромир.
Приставка «микро» означает отношение к очень малым размерам. Таким образом, можно сказать, что микромир – это что-то небольшое.
Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная размерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечности до 10 -24 секунд.
В философии в качестве микромира изучается человек, а в физике, концепции современного естествознания в качестве микромира изучаются молекулы.

Микромир имеет свои особенности, которые можно выразить так:
1) единицы измерения расстояния (м, км и т. д.), используемые человеком, применять просто бессмысленно;
2) единицы измерения веса человека (г, кг, фунты и т. д.) применять также бессмысленно.
Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII веке была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов.
Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX веке Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе.
В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX века, когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов.
История исследования строения атома началась в 1895 году благодаря открытию Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов.

Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.
Существовало несколько моделей строения атома.
В 1902 году английский физик У. Томсон (лорд Кельвин) предложил первую модель атома - положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг».
В 1911 году Э. Резерфорд предложил модель атома, которая напоминала солнечную систему: в центре находится атомное ядро, а вокруг него по своим орбитам движутся электроны.
Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

Обе эти модели оказались противоречивы.
В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.
Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:
1) в каждом атоме существует несколько стационарных состояний.
2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует.
Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.
Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Макромир.
Естественно, есть объекты, которые по своим размерам гораздо больше объектов микромира. Эти объекты и составляют макромир. Макромир «населяют» только те объекты, которые по своим размерам соизмеримы с размерами человека. К объектам макромира можно отнести и самого человека
Макромир имеет довольно сложную организацию. Его самый маленький элемент – атом, а самая большая система – планета Земля. В его состав входят как неживые системы, так и живые системы различного уровня. Каждый уровень организации макромира содержит как микроструктуры, так и макроструктуры. Например, молекулы вроде бы должны относится к микромиру, поскольку они нами непосредственно не наблюдаются. Но, с одной стороны, самая большая структура микромира – атом. А у нас есть сейчас возможность видеть с помощью микроскопов последнего поколения даже часть атома водорода. С другой стороны, есть огромные молекулы, чрезвычайно сложные по своему строению, например, ДНК ядра может быть длинной почти в один сантиметр. Подобная величина уже вполне сопоставима с нашим опытом, и если бы молекула была толще, мы бы ее увидели невооруженным глазом.
Все вещества, находящиеся в твердом или жидком состоянии, состоят из молекул. Молекулы образуют и кристаллические решетки, и руды, и скалы, и другие объекты, т.е. то, что мы можем почувствовать, увидеть и т.д. Однако, несмотря на такие огромные образования, как горы и океаны, - это все молекулы, связанные между собой. Молекулы – новый уровень организации, они все состоят из атомов, которые в этих системах рассматриваются как неделимые, т.е. элементы системы.
Как физический уровень организации макромира, так и химический уровень имеют дело с молекулами и различными состояниями вещества. Однако химический уровень значительно более сложный. Он не сводится к физическому, рассматривающему строение веществ, их физические свойства, движение (все это было исследовано в рамках классической физики) хотя бы по сложности химических процессов и реакционной способности веществ.
На биологическом уровне организации макромира, кроме молекул, мы обычно не можем без микроскопа разглядеть и клетки. Но ведь есть клетки, которые достигают огромной величины, например аксоны нейронов осьминогов длинной в один метр и даже больше. Вместе с тем все клетки имеют определенные сходные черты: они состоят из мембран, микротрубочек, у многих есть ядра и органеллы. Все мембраны и органеллы в свою очередь состоят из гигантских молекул (белков, липидов и др.), а эти молекула состоят из атомов. Поэтому как гигантские информационные молекулы (ДНК, РНК, ферменты), так и клетки – это микроуровни биологического уровня организации материи, включающего и такие огромные образования, как биоценозы и биосфера.

Мегамир.
Мегамир – это мир объектов, которые несоизмеримо больше человека.
Вся наша Вселенная – это мегамир. Ее размеры огромны, она безгранична и постоянно расширяется. Вселенную заполняют объекты, которые значительно больше нашей планеты Земля и нашего Солнца. Нередко бывает, что разница между какой-либо звездой за пределами Солнечной системы в десятки раз превосходит Землю.
Мегамир, или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию в форме планет и планетных систем, возникающих вокруг звезд, звезд и звездных систем - галактик; системы галактик - Метагалактики.
Исследование мегамира тесно связано с космологией и космогонией.
Космогония – это раздел науки астрономии, который изучает происхождение галактик, звезд, планет, а также других объектов. На сегодня космогонию можно разделить на две части:
1) космогония Солнечной системы. Эту часть (или вид) космогонии по-другому называют планетной;
2) звездная космогония.
И хотя на всех этих уровнях действуют свои специфические закономерности, микромир, макромир и мегамир теснейшим образом взаимосвязаны.

    Анализ классического и современного понимания концепции макромира.
В истории изучения природы можно выделить два этапа: донаучный и научный. Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествознания в XVI-XVII веках. В этот период учения о природе носили чисто натурфилософский характер: наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.
Наиболее значимой для последующего развития естественных наук была концепция дискретного строения материи - атомизм, согласно которому все тела состоят из атомов -мельчайших в мире частиц.
Исходными началами в атомизме выступали атомы и пустота. Сущность протекания природных процессов объяснялась на основе механического взаимодействия атомов, их притяжения и отталкивания.
Поскольку современные научные представления о структурных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начинать исследование нужно с концепций классической физики.
И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.
Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики. Считалось, что все физические процессы можно свести к перемещению материальных точек под действием силы тяготения, которая является дальнодействующей
Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлении, которые не могли быть полностью объяснены в рамках механистической картины мира.
Разрабатывая оптику, И. Ньютон, следуя логике своего учения, считал свет потоком материальных частиц – корпускул. В корпускулярной теории света И. Ньютона утверждалось, что светящиеся тела излучают мельчайшие частицы, которые движутся в согласии с законами механики и вызывают ощущение света, попадая в глаз. На базе этой теории И. Ньютоном было дано объяснение законам отражения и преломления света.
Наряду с механической корпускулярной теорией, осуществлялись попытки объяснить оптические явления принципиально иным путем, а именно - на основе волновой теории, сформулированной Х. Гюйгенсом. Главным аргументом в пользу своей теории Х.Гюйгенс считал тот факт, что два луча света, пересекаясь, пронизывают друг друга без каких-либо помех в точности, как два ряда волн на воде.
Согласно же корпускулярной теории, между пучками излученных частиц, каковыми является свет, возникали бы столкновения или, по крайней мере, какие-либо возмущения. Исходя из волновой теории Х. Гюйгенс успешно объяснил отражение и преломление света.
Однако против нее существовало одно важное возражение. Как известно, волны обтекают препятствия. А луч света, распространяясь по прямой, обтекать препятствия не может. Если на пути луча света поместить непрозрачное тело с резкой гранью, то его тень будет иметь резкую границу. Однако это возражение вскоре было снято благодаря опытам Гримальди. При более тонком наблюдении с использованием увеличительных линз обнаруживалось, что на границах резких теней можно видеть слабые участки освещенности в форме перемежающихся светлых и темных полосок или ореолов. Это явление было названо дифракцией света.
Волновая теория света была вновь выдвинута в первые десятилетия ХІХ века английским физиком Т. Юнгом и французским естествоиспытателем О. Ж. Френелем. Т. Юнг дал объяснение явлению интерференции, т.е. появлению темных полосок при наложении света на свет. Суть ее можно описать с помощью парадоксального утверждения: свет, добавленный к свету, не обязательно дает более сильный свет, но может давать более слабый и даже темноту. Причина этого заключается в том, что согласно волновой теории, свет представляет собой не поток материальных частиц, а колебания упругой среды, или волновое движение. При наложении друг на друга цепочек волн в противоположных фазах, где гребень одной волны совмещается с впадиной другой, они уничтожают друг друга, в результате чего появляются темные полосы.
Другой областью физики, где механические модели оказались неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М.Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушали представления ньютоновской физики о дискретном веществе, как единственном виде материи и положили начало электромагнитной картине мира. Явление электромагнетизма открыл датский естествоиспытатель Х.К.Эрстед, который впервые заметил магнитное действие электрических токов.
Позже М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Его работы стали исходным пунктом исследований Дж.К.Максвелла, заслуга которого состоит в математической разработке идей М.Фарадея о магнетизме и электричестве.
Обобщив установленные ранее экспериментальным путем законы электромагнитных явлений (Кулона, Ампера) и открытое М.Фарадеем явление электромагнитной индукции, Максвелл чисто математическим путем нашел систему дифференциальных уравнений, описывающих электромагнитное поле. Эта система уравнений дает в пределах своей применимости полное описание электромагнитных явлений и представляет собой столь же совершенную и логически стройную теорию, как и система ньютоновской механики.
Из уравнений следовал важнейший вывод о возможности самостоятельного существования поля, не «привязанного» к электрическим зарядам. В
и т.д.................

Структурные уровни организации материи

Наименование параметра Значение
Тема статьи: Структурные уровни организации материи
Рубрика (тематическая категория) Образование

В самом общем виде материя представляет собой бесконечное множество всœех сосуществующих в мире объектов и систем, совокупность их свойств, связей, отношений и форм движения. При этом она включает в себя не только всœе непосредственно наблюдаемые объекты и тела природы, но и всœе то, что не дано нам в ощущениях. Весь окружающий нас мир - это движущаяся материя в ее бесконечно разнообразных формах и проявлениях, со всœеми свойствами, связями и отношениями. В этом мире всœе объекты обладают внутренней упорядоченностью и системной организацией. Упорядоченность проявляется в закономерном движении и взаимодействии всœех элементов материи, благодаря чему они объединяются в системы. Весь мир, таким образом, предстает как иерархически организованная совокупность систем, где любой объект одновременно является самостоятельной системой и элементом другой, более сложной системы.

Согласно современной естественно-научной картинœе мира всœе природные объекты также представляют из себяупорядоченные, структурированные, иерархически организованные системы. Исходя из системного подхода к природе вся материя делится на два больших класса материальных систем - неживую и живую природу. В системе неживой природы структурными элементами являются: элементарные частицы, атомы, молекулы, поля, макроскопические тела, планеты и планетные системы, звезды и звездные системы, галактики, метагалактики и Вселœенная в целом. Соответственно в живой природе основными элементами выступают белки и нуклеиновые кислоты, клетка, одноклеточные и многоклеточные организмы, органы и ткани, популяции, биоценозы, живое вещество планеты.

В то же время как неживая, так и живая материя включают в себя ряд взаимосвязанных структурных уровней. Структура - это совокупность связей между элементами системы. По этой причине любая система состоит не только из подсистем и элементов, но и из разнообразных связей между ними. Внутри этих уровней главными являют-

ся горизонтальные (координационные) связи, а между уровнями - вертикальные (субординационные). Совокупность горизонтальных и вертикальных связей позволяет создать иерархическую структуру Вселœенной, в которой основным квалификационным признаком является размер объекта и его масса, а также их соотношение с человеком. На базе этого критерия выделяют следующие уровни материи: микромир, макромир и мегамир.

Микромир - область предельно малых, непосредственно ненаблюдаемых материальных микрообъектов, пространственная размерность которых исчисляется в диапазоне от 10 -8 до 10 -16 см, а время жизни - от бесконечности до 10 - 24 с. Сюда относятся поля, элементарные частицы, ядра, атомы и молекулы.

Макромир - мир материальных объектов, соизмеримых по своим масштабам с человеком и его физическими параметрами. На этом уровне пространственные величины выражаются в миллиметрах, сантиметрах, метрах и километрах, а время - в секундах, минутах, часах, днях и годах. В практической действительности макромир представлен макромолекулами, веществами в различных агрегатных состояниях, живыми организмами, человеком и продуктами его деятельности, ᴛ.ᴇ. макротелами.

Мегамир - сфера огромных космических масштабов и скоростей, расстояние в которой измеряется астрономическими единицами, световыми годами и парсеками, а время существования космических объектов - миллионами и миллиардами лет. К этому уровню материи относятся наиболее крупные материальные объекты: звезды, галактики и их скопления.

На каждом из этих уровней действуют свои специфические закономерности, несводимые друг к другу. Хотя всœе эти три сферы мира теснейшим образом связаны между собой.

Структурные уровни организации материи - понятие и виды. Классификация и особенности категории "Структурные уровни организации материи" 2017, 2018.

Любое членение мира на составные части условны, как условна любая граница, разделяющая его части. Условны понятия и схемы, которые важны для нас как нечто, лежащее в основании созданной нами условности, которая потом властвует над нашим воображением по принципу созданной нами азбуки. Но именно из неё создается стройная система языка и понятий, утверждающих единство ее структуры, единство Мира, состоящего из ограниченного числа атомов в Периодическом законе.

Привычное деление мира на микро- и макромир также условно, поскольку слишком велики различия между объектами этих иерархических ступеней. Поэтому мы предложим еще одну систему, поскольку она нам кажется лучше. Другие же найдут в ней нечто такое, что заставит их построить свою, которая им покажется более отвечающей потребности исследователя в её детализации для осмысления картины Мира.

Под структурой (от латинского слова structure – строение, порядок, расположение) понимается закономерное пространственное расположение единичного в целом, как совокупность устойчивых связей элементарных частей объекта, обеспечивающих его целостность и тождественность самому себе, сохранение его основных свойств под влиянием внутренних и внешних сил.

Структура вселенной, например, представлена закономерным пространственным расположением и устойчивыми связями галактик, скоплений галактик и т.д. Структура галактик состоит из закономерно расположенных в них и устойчивых связей звезд и звездных скоплений. Структура звездной системы (например, Солнечной) представляет собой закономерное расположение и устойчивость связей планет, астероидов и т.д. Структура живого и неживого вещества представляет собой закономерное пространственное расположение и устойчивость связей атомов, молекул. Структура атома характеризуется закономерным расположением и устойчивостью связей частиц, расположенных вокруг ядра и внутри него.

Основными принципами системы являются:

    ее целостность (принципиальная несводимость свойств системы к сумме свойств ее элементов);

    структурность (закономерность связей и отношений элементов системы);

    взаимозависимость системы от коллективных внутренних (обусловленных структурой) сил и свойств окружающей среды;

    соподчиненность или иерархичность (каждый элемент системы может рассматриваться как подсистема свойств системы другого уровня);

    множественность описания каждой системы на основе множества слагающих ее подсистем, свойств, отношений этих свойств.

Структурные уровни организации материи могут быть представлены схемой, таблица 2.1.5-1.

Микромир неживой материи Квантовый мир. Мир частиц. Мир структуры атомов. Мир молекул, элементарных ячеек кристаллических структур и текстур, мир молекул жидкостей, газов, заряженных ионов плазмы.
Микромир живого вещества Мир структуры клетки , нуклеотидов и белков. Мир бактерий и вирусов.
Мезомир неживой материи Мир окружающей действительности человека, с которым связана его повседневная жизнь. Мир минералов, пород, слоев Земли, ландшафтов, биосферы. Искусственно созданный материальный мир. Мир Земли, как планеты Солнечной системы
Мезомир живого Мир насекомых, животных и растений, популяций, экосистем окружающих повседневную жизнь человека.
Макромир Мир структуры Солнечной системы: Солнца, планет и составляющих элементов структуры Солнечной системы.
Мегамир Мир структуры нашей галактики и Метагалактики (видимой части вселенной)
Супермир? Мир структуры взаимодействующих вселенных (?). Множество миров

Таблица 2.1.5-1

Как видим, такое членение на семь иерархических уровней мира условно, как условны и границы подразделений. Граница – это мир условностей, которые меняются под влиянием познания действительного мира. Например, границы микромира и макромира в существующей иерархии определяются разрешающей способностью глаза. С помощью созданных технических средств, приборов и других физических устройств человек смог заглянуть в структуру микромира, макромира и мегамира. Наличие супермира, как совокупности взаимодействующих вселенных, предполагается концепцией множественности миров, выдвинутой ещё Д.Бруно. Отсюда подсистемы окружающего нас материального мира слагают единую бесконечную в пространстве-времени систему или структуру Супермира.

Условность и необходимость подразделений мира на его составные элементы исходит из необходимости познать мир по частям и в целом. В процессе познания расширяются представления о границах подразделений. Например, границы мезомира в процессе развития человека и его сознания также непрерывно расширяются. На заре человеческой цивилизации – это он сам и его мир естественной окружающей его природной среды. Позже появляются искусственные орудия труда, машины, созданные самим человеком. Потом человек выходит в ближайший космос, и его окружающей действительностью являются объекты околоземного пространства, затем, в отдаленном будущем, всей Солнечной системы. То есть, постепенно мезомир расширяет свои границы до объектов макромира. С развитием космических путешествий за пределы Солнечной системы объектом окружающего мира может служить и мегамир. Пионер-10, творение человека, вышел за пределы Солнечной системы и уже находится в структуре Млечного Пути – нашей галактики.

Удивительно, но человеческий разум способен создавать и виртуальный мир, в котором может путешествовать, испытывать наслаждение от открытий, страдать, любить и ненавидеть. Граница виртуального и действительного мира также условна и скоротечна, насколько мы можем быстро перейти от теоретических рассуждений об устройстве мира к практическим реализациям идей на основе опыта.

Поразителен также факт неразделимости живой и неживой материи на всех уровнях ее организации. «Живое – от живого!». Гласит принцип Пастера-Редди. Но живое возникло из неживого и является следствием эволюции неживого!

Если существует микромир, мезомир и макромир живой материи, то логически Млечный путь (наша галактика), имея жизнь в Солнечной системе, сама является носителем жизни. Подобные рассуждения приведут нас к мысли о том, что жизнь является принадлежностью всей вселенной. Именно с появлением разума на Земле Метагалактика перешла в новое качество – стала разумной.

Составные элементы живого (атомы, молекулы) представляют собой каждый в отдельности неживое вещество. Если разобрать живое на атомы, то последующей операцией сборки атомов невозможно создать живое. Для этого необходима вся история эволюции живого и неживого действительного окружающего мира вселенной. В этом заключается один из парадоксов членения мира на живую и неживую его составляющие. Скорее надо предположить, что все вещество во вселенной просто пронизано элементами, способными к собственной самоорганизации под названием жизнь, чем разделять понятия живого и неживого. Сама же вселенная представляет собой развивающееся и непрерывно совершенствующееся единство бесконечно малого (нечто) и бесконечно большого (всего).

Материя структурирована не только движением, пространством, временем, формой, но и размерностью, уровнем организации. Но если движение, пространство и время в материальном мире являются непременным атрибутом сосуществования, то уровень организации материи есть классификационный принцип, удобный для расчленения (дробления) признаков существования материального мира с целью его дискретного познания путем последовательного приближения от частного к общему или наоборот.

Иерархические уровни организации вещества в естественнонаучных дисциплинах разные. В органическом мире они разделяются на классы, типы, группы, семейства, рода, виды. В неорганическом мире иерархические уровни отвечают комплексам, формациям, породам, минеральным видам и т.д. Причем границы этого разделения, повторяем, весьма условны и определяются необходимостью получения информации о структурированной единице (части), изучением свойства которой, трансляции её в четырёхмерном пространстве мы можем понять, как устроено целое.

Иерархия (от греч. hieros - священный и arche – власть). Расположение совокупности элементов в порядке от высшего к низшему рангу. Способ устройства сложных систем, при котором звенья системы распределены по различным уровням в соответствии с заданным критерием.

Два иерархических уровня организации материи – микро- и макромир (микрокосм и макрокосм) издавна разграничиваются естественными науками, поскольку в них проявляются формы движения несколько по-иному. Возникают новые взаимодействия. Но и это деление материального мира является условным. Ибо макромир состоит из структурированного вещества микромира бесконечно транслируемого в пространстве-времени всё существующее и будущее многообразие явлений, состояний, движений объектов.

Уже в древности существовала идея о микро- и макрокосме. Микрокосм – мир человека, макрокосм – вся Природа. Это как бы живые существа, созданные по единому образцу и наделенные единой душой… Уже в древности существовал принцип, что человек является мерой всех вещей, поскольку люди видели в строении его тела гармонию, и эту гармонию переносили на измеряемый ими мир через пропорции человеческого тела. Так было создано одно из чудес света – Парфенон, над разгадкой гармонии которого так долго бьются строители и архитекторы.

Микрокосм и макрокосм (от греч., большой мир - вселенная и малый мир – человек). Натурфилософы XVI в., в особенности Парацельс, рассматривали вселенную как человеческий организм в увеличенном виде, а человека как вселенную в миниатюре и выводили отсюда, что между вселенной и человеком существует такая же связь, как и между членами одного телесного организма, и почему, например, звезды могут иметь влияние на судьбу человека.

Последовательность расположения объектов во Вселенной по структурным уровням материи (СУМ) предполагает существование структурной организации сложных многоуровенных систем. Она проявляется в упорядочении взаимодействий между СУМ от высшего к низшему порядку. Предложена в работе Б.П. Иванова , таблица 2.1.5-2.

Исходя из общего принципа единства мироустройства, современная наука на основе экспериментальных достижений описывает материю в диапазоне от 1∙10 -18 до 1∙10 26 м. Она проявляет себя как в форме конкретных объектов, так и среды.

Поиски фундаментальных закономерностей, которые бы позволили структурировать мир таким образом, чтобы стало возможным предсказание любого исторического уровня его организации, продолжаются. С развитием квантовой механики, мир неожиданно представился «Летучим Голландцем», когда оказалось нельзя однозначно определиться в его реальных границах ни в пространстве, ни во времени. В границах так необходимых нам в привычном для нас макромире в силу двойственности природы микромира . Мир в пространстве микромира оказался «размазанным», а границы его выглядели настолько условными, что возникла необходимость для описания взаимодействий между его частицами прибегнуть к виртуальным частицам, «рождение» которых одновременно бы совпадало с их «смертью». И притом они успевали быть передаточным звеном такого взаимодействия.

По представлениям Б.П.Иванова материя оказывается «не размазана», а группируется в пространстве определенным образом. Система материи состоит из сгустка (ядра) и окружающего его физического поля, находящиеся в определенных отношениях и связях друг с другом, образующих некую целостность (единство). Такая система материи названа им организационной формой материи (ОФМ) или локализованным объектом вселенной. Автор в строении материи проводит аналогию между строением частиц, атомов, звезд, галактик. То есть, на любом уровне организации материи, будь-то частица, атом, звезда или галактика определенно существует ядро и физическое поле, объединенные в одну единую систему организационной формы материи, которая является фундаментальной единицей всего известного мироздания, включая вселенную.

Группу организованных форм материи, имеющих одно общее свойство, например, электрический заряд у ядер атомов элементов таблицы Д.И.Менделеева, автор объединяет в один структурный уровень материи (СУМ).

Всю совокупность СУМ он вмещает в следующую иерархию, состоящую из элементов:

  • элементарные частицы;
  • ядра;
  • атомы;
  • молекулы;
  • кристаллы;
  • пыль;
  • микрометеороиды;
  • метеороиды;
  • кометы;
  • астероиды;
  • планеты;
  • звезды; скопления звезд;
  • шаровые скопления;
  • галактики;
  • скопления галактик;
  • сверхскопления галактик;

Метагалактика.

  • Это также весьма условная иерархия. Поскольку она может быть дополнена, например, последовательным рядом:
  • кристалл, элементарная ячейка которого состоит из атомов или ионов, транслируемых по кристаллографическим направлениям;
  • минерал (состоящий из совокупности атомов, ионов, молекул);
  • порода (как совокупность слагающих ее различных минералов);
  • пыль (как совокупность кристаллов, минералов, пород разного состава) и т.д.;
  • формации, как сообщество геологических тел, объединяемые в парагенетическом, генетическом или в каком-то ином отношении, состоящие из пород, руд, минералов и т.д.

Материальным объектом галактики являются и релятивистские объекты так называемых черных дыр и т.д.

Тем не менее, в предлагаемой иерархии Б.П.Иванова прослеживается определенная закономерность. Между структурными уровнями материи наблюдаются скачкообразные изменения их обобщенных качественных характеристик, что позволило автору использовать в этой иерархии модель «квантовой лестницы», на ступеньках которой размещаются структурные уровни материи.

В пределах одной ступени структурный уровень материи по Б.П.Иванову состоит из трех подуровней. В каждом подуровне наблюдается регулярная повторяемость свойств объектов по мере роста радиуса ядра ОФМ вследствие семикратной бифуркации. Свойство структурности в иерархии СУМ наследуют структурные уровни нижних ступеней. Например, Метагалактика состоит из сверхскоплений галактик, любая галактика в свою очередь состоит из звездных скоплений и т.д. вплоть к элементарным частицам. То есть в основе материи лежит понятие об элементарной части, которая повторяется, транслируется в пространстве-времени, в результате чего формируется целое: вещество и структура мира.

Структурные уровни организации материи по Б.П.Иванову

Номер СУМ Структурные уровни материи Верхние и нижние границы радиуса ядер ОФМ, м Средние геометрические радиусы скоплений ОФМ,м Кинетическая энергия скоплений ОФМ, Дж Собственные частоты скоплений, Гц
21.0 К вышестоящим уровням материи
20.0 Квазары 6,88·10 41 - 5,38·10 39 6,08·10 40 4,5·10 61 2,53·10 -60
19.0 Радиогалактики 4,2·10 37 4,25·10 38 3,12·10 58 3,67·10 -57
18.0 Сверхскопления галактик 3,2810 35 3,71·10 36 2,15·10 55 5,32·10 -54
17.0 Скопления галактик 2,56·10 33 2,9·10 34 1,49·10 52 7,7·10 -51
16.0 Кратные галактики 2,0·10 31 2,26·10 32 1,03·10 48 1,11·10 -47
15.0 Гипергалактики 1,56·10 29 1,17·10 30 7,1·10 45 1,61·10 -44
14.0 Галактики 1,22·10 27 1,38·10 28 4,9·10 42 2,32·10 -41
13.0 Субгалактики 9,55·10 24 1,08·10 26 3,38·10 39 3,39·10 -38
12.0 Гипершаровые скопления 7,46·10 22 8,44·10 23 2,33·10 36 4,9·10 -35
11.0 Шаровые скопления звезд 5,83·10 20 6,59·10 21 1,61·10 33 7,1·10 -32
10.0 Субшаровые скопления звезд 4,55·10 18 5,1·10 19 1,11·10 30 1,03·10 -28
9.0 Рассеянные скопления звезд 3,56·10 16 4,0·10 17 7,69·10 26 1,49·10 25
8.0 Кратные звезды 2,78·10 14 3,14·10 15 5,3·10 23 2,16·10 -22
7.0 Гиперзвезды 2,17·10 12 2,43·10 13 3,66·10 20 3,1·10 -19
6.0 Звезды 1,7·10 10 1,92·10 11 2,53·10 17 4,52·10 -16
5.0 Субзвезды 1,33·10 8 1,5·10 9 1,75·10 14 6,55·10 -13
4.0 Планеты 1,04·10 6 1,17·10 7 1,2·10 11 9,49·10 -10
3.0 Астероиды 8092 9,15·10 4 8,33·10 7 1,37·10 -6
2.0 Кометы 63,22 715 5,76·10 4 1,99·10 -3
1.0 Глыбы-гиперметеороиды 0,494 5,588 39,75 2,88
.0.1 Гравий-метеороиды 0,39·10 -3 4,36·10 -2 2,74·10 -2 4172
.0.2 Песок-миллиметеороиды 3,0·10 -5 3,41·10 -4 1,89·10 -5 6,04·10 6
.0.3 Алеврит-микрометеороиды (пыль) 2,35·10 -7 2,66·10 -6 1,3·10 -8 1,99·10 9
.0.4 Кристалл 1,84·10 -9 2,08·10 -8 9,04·10 -12 1,27·10 13
.0.5 Кластеры 1,44·10 -11 1,63·10 -10 6,24·10 -15 1,83·10 16
.0.6 Молекулы 1,12·10 -13 1,27·10 -12 4,31·10 -18 2,66·10 19
.0.7 Атомы 8,77·10 -16 9,95·10 -15 2,98·10 -21 3,85·10 22
.0.8 Нуклиды 6,85·10 -18 7,76·10 -17 2,05·10 -24 5,57·10 25
.0.9 Протоны 5,35·10 -20 6,06·10 -19 1,42·10 -27 8,0·10 28
.0.10 Электроны 4,18·10 -22 4,73·10 -21 9,8·10 -31 1,17·10 32
.0.11 Позитроны 3,27·10 -24 3,7·10 -23 6,77·10 -34 1,69·10 35
.0.12 Субэлектроны 2,55·10 -26 2,9·10 -25 4,67·10 -37 2,45·10 38
.0.13 γ- кванты 1,7·10 -28 2,26·10 -27 3,22·10 -40 3,55·10 41
.0.14 Рентгеновские лучи 1,56·10 -30 1,76·10 -29 2,22·10 -43 5,14·10 44
.0.15 Видимые лучи 1,22·10 -32 1,38·10 -31 1,53·10 -46 7,44·10 47
.0.16 СВЧ и ВЧ 9,5·10 -35 1,08·10 -33 1,06·10 -49 1,08·10 51
.0.17 Средние радиоволны 7,43·10 -37 8,4·10 -36 7,3·10 -53 1,56·10 54
.0.18 Длинные радиоволны 5,80·10 -39 6,57·10 -38 5,05·10 -56 2,26·10 57
.0.19 Низкие частоты 4,50·10 -41 5,1·10 -40 3,49·10 -62 3,27·10 60
.0.20 Инфракрасные частоты 3,50·10 -43 4,0·10 -42 2,41·10 -62 4,74·10 63
.0.21 21 cлой (СУМ) 2,77·10 -45 3,1·10 -44 1,66·10 -65 6,85·10 66
.0.22 22 2,16·10 -47 2,4·10 -46 1,15·10 -68 9,94·10 69
.0.23 23 1,69·10 -49 1,9·10 -48 7,94·10 -72 1,44·10 73
.0.24 24 1,32·10 -51 1,5·10 -50 5,48·10 -75 2,08·10 76
.0.25 25 1,0·10 -53 1,2·10 -52 3,78·10 -78 3,02·10 79
.0.26 26 8,00·10 -56 9,1·10 -55 2,61·10 -81 4,37·10 82
.0.27 27 6,30·10 -57 7,1·10 -57 1,8·10 -84 6,33·10 85
.0.28 28 4,90·10 -60 5,5·10 -59 1,25·10 -87 9,17·10 88
К внутренним структурным уровням материи и к ее эфиру

Таблица 2.1.5-2

По выше приведенным табличным данным Б.П.Ивановым граница микрокосма (внутреннего мира) и макрокосма определяется числом после.0., .0.1 и т.д. В микрокосм, таким образом, вошли структуры, начиная от гравийных частиц, песка, алеврита и меньшей размерности. Достоинство выше приведенной структурной иерархии на основе идеи организационной формы материи заключается в возможности определения дискретных границ размерности материального мира путем деления на коэффициент подобия равным числу 128 (для микрокосма) и путем умножения на этот же коэффициент (для макрокосма). Таким образом, микромир по Б.П. Иванову вполне дискретен и поддается граничному структурированию, но на границах микроструктур их свойства меняются скачкообразно.

Макрокосм для Земли в этой классификации начинается с околоземного пространства и распространяется на всю внешнюю часть вселенной.

Иерархический подход Б.П.Иванова хорош для описания научной картины мира. Он несколько будет смущать обывателя в той части, что подобное членение материального мира, хотя и охватывает все многообразие закономерно изменяющихся его свойств и структур, но не дает возможности образно выделить иерархическую соподчиненность, с которой обычно имеет дело сознание человека. Он чаще меряет не числом, а соотносимым масштабом, способностью разрешения глаза или осознанием размерности на уровне ощущений.

В концепции «квантового рождения вселенной», выдвинутой в 1973 г. П. И. Фоминым и Е. Трионом, причинно-обусловленные связи на всех структурных уровнях Мира наблюдается в «начальном» состоянии вселенной, которое представляло собой физический вакуум. А причиной наблюдаемого ныне космологического расширения могла стать антигравитирующая способность вакуума, вызывающего отталкивание между «внесенными» в него частицами вещества. И для него давление отрицательно: p = - ε. Однако основным камнем преткновения квантового рождения вселенной заключается в необходимости объяснения, почему она выглядит изотропной при расширении из состояния сингулярности.

Первое поколение космологических моделей соответствовало однородному и изотропному распределению материи, то есть описывало не реальное распределение вещества, а – усредненное по ячейкам, размер которых порядка межгалактических расстояний, с начальной сингулярностью – состоянием с бесконечной плотностью. Эволюция мира в этих моделях зависит от суммарной плотности вещества ρ в настоящую эпоху. И если ρ < ρ крит. (~10 -25 г/см 3), то пространство бесконечно («открытый мир») и наблюдающееся ныне космологическое расширение неограниченно; в случае ρ > ρ крит. – пространство конечно, а расширение, спустя некоторое время, должно смениться сжатием («замкнутый мир»). Открыт или замкнут, в рамках данных моделей Мир (Метагалактика) в настоящее время не ясно, так как современные наблюдательные оценки свидетельствуют о том, что ρ / ρ крит ~1.

Второе поколение космологических моделей. Учет неоднородностей реального распределения вещества в Метагалактике привел к несколько иной картине её эволюции. Эти модели противоречат наблюдаемой глобальной изотропии реликтового (фонового) излучения. Потому как любое сколь угодно малое отклонение от изотропности быстро растет с расширением вселенной, и она не может открываться в пространстве изотропно, поскольку расширение идет быстрее, чем распространяется электромагнитное излучение.

В моделях третьего поколения предусматривается «первичное квантование» параметров модели (приближение к полной квантовой модели мира). Однако модели третьего и второго поколений не позволяют объяснить изотропность Метагалактики, включая изотропность реликтового излучения, за исключением его флуктуации – дипольная компонента.


В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета и т.д. может быть рассмотрен как система – сложное образование, включающее составные части, элементы и связи между ними. Элемент в данном случае означает минимальную, далее неделимую часть данной системы.

Совокупность связей между элементами образует структуру системы, устойчивые связи определяют упорядоченность системы. Связи по горизонтали – координирующие, обеспечивают корреляцию (согласованность) системы, ни одна часть системы не может измениться без изменения других частей. Связи по вертикали – связи субординации, одни элементы системы подчиняются другим. Система обладает признаком целостности – это означает, что все ее составные части, соединяясь в целое, образуют качество, не сводимое к качествам отдельных элементов. Согласно современным научным взглядам все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы.

В самом общем смысле слова «система» обозначает любой предмет или любое явление окружающего нас мира и представляет собой взаимосвязь и взаимодействие частей (элементов) в рамках целого. Структура - это внутренняя организация системы, которая способствует связи ее элементов в единое целое и придает ей неповторимые особенности. Структура определяет упорядоченность элементов объекта. Элементами являются любые явления, процессы, а также любые свойства и отношения, находящиеся в какой-либо взаимной связи и соотношении друг с другом.

В понимании структурной организации материи большую роль играет понятие «развитие». Понятие развития неживой и живой природы рассматривается как необратимое направленное изменение структуры объектов природы, поскольку структура выражает уровень организации материи. Важнейшее свойство структуры - ее относительная устойчивость. Структура - это общий, качественно определенный и относительно устойчивый порядок внутренних отношений между подсистемами той или иной системы. Понятие "уровень организации" в отличие от понятия "структура" включает представление о смене структур и ее последовательности в ходе исторического развития системы с момента ее возникновения. В то время как изменение структуры может быть случайным и не всегда имеет направленный характер, изменение уровня организации происходит необходимым образом.

Системы, достигшие соответствующего уровня организации и имеющие определенную структуру, приобретают способность использовать информацию для того, чтобы посредством управления сохранить неизменным (или повышать) свой уровень организации и способствовать постоянству (или уменьшению) своей энтропии (энтропия – мера беспорядка). До недавнего времени естествознание, и другие науки могли обходиться без целостного, системного подхода к своим объектам изучения, без учета исследования процессов образования устойчивых структур и самоорганизации.

В настоящее время проблемы самоорганизации, изучаемые в синергетике, приобретают актуальный характер во многих науках, начиная от физики и кончая экологией.

Задача синергетики - выяснение законов построения организации, возникновения упорядоченности. В отличие от кибернетики здесь акцент делается не на процессах управления и обмена информацией, а на принципах построения организации, ее возникновения, развития и самоусложнения (Г.Хакен). Вопрос об оптимальной упорядоченности и организации особенно остро стоит при исследованиях глобальных проблем - энергетических, экологических, многих других, требующих привлечения огромных ресурсов.

Современные взгляды на структурную организацию материи

В классическом естествознании учение о принципах структурной организации материи было представлено классическим атомизмом. Идеи атомизма служили фундаментом для синтеза всех знаний о природе. В XX веке классический атомизм подвергся радикальным преобразованиям.

Современные принципы структурной организации материи связаны с развитием системных представлений и включают некоторые концептуальные знания о системе и ее признаках, характеризующих состояния системы, ее поведение, организацию и самоорганизацию, взаимодействие с окружением, целенаправленность и предсказуемость поведения и др. свойства.

Наиболее простой классификацией систем является деление их на статические и динамические, которое, несмотря на его удобство все же условно, т.к. все в мире находится в постоянном изменении. Динамические системы делят на детерминистские и стохастические (вероятностные). Эта классификация основана на характере предсказания динамики поведения систем. Такие системы исследуются в механике и астрономии. В отличие от них стохастические системы, которые обычно называют вероятностно – статистическими, имеют дело с массовыми или повторяющимися случайными событиями и явлениями. Поэтому предсказания в них имеют не достоверный, а лишь вероятностный характер.

По характеру взаимодействия с окружающей средой различают системы открытые и закрытые (изолированные), а иногда выделяют также частично открытые системы. Такая классификация носит в основном условный характер, т.к. представление о закрытых системах возникло в классической термодинамике как определенная абстракция. Подавляющее большинство, если не все системы, являются открытыми.

Многие сложноорганизованные системы, встречающиеся в социальном мире, являются целенаправленными, т.е. ориентированными на достижение одной или нескольких целей, причем в разных подсистемах и на разных уровнях организации эти цели могут быть различными и даже придти в конфликт друг с другом.

Классификация и изучение систем позволили выработать новый метод познания, который получил название системного подхода. Применение системных идей к анализу экономических и социальных процессов способствовало возникновению теории игр и теории принятия решений. Самым значительным шагом в развитии системного метода было появление кибернетики как общей теории управления в технических системах, живых организмах и обществе. Хотя отдельные теории управления существовали и до кибернетики, создание единого междисциплинарного подхода дало возможность раскрыть более глубокие и общие закономерности управления как процесса накопления, передачи и преобразования информации. Само же управление осуществляется с помощью алгоритмов, для обработки которых служат компьютеры.

Универсальная теория систем, обусловившая фундаментальную роль системного метода, выражает с одной стороны, единство материального мира, а с другой стороны, единство научного знания. Важным следствием такого рассмотрения материальных процессов стало ограничение роли редукции в познании систем. Стало ясно, что чем больше одни процессы отличаются от других, чем они качественно разнороднее, тем труднее поддаются редукции. Поэтому закономерности более сложных систем нельзя полностью сводить к законам низших форм или более простых систем. Как антипод редукционистского подхода возникает холистический подход (от греч. holos – целый), согласно которому целое всегда предшествует частям и всегда важнее частей.

Всякая система есть целое, образованное взаимосвязанными и взаимодействующими его частями. Поэтому процесс познания природных и социальных систем может быть успешным только тогда, когда в них части и целое будут изучаться не в противопоставлении, а во взаимодействии друг с другом.

Современная наука рассматривает системы как сложные, открытые, обладающие множеством возможностей новых путей развития. Процессы развития и функционирования сложной системы имеют характер самоорганизации, т.е. возникновения внутренне согласованного функционирования за счет внутренних связей и связей с внешней средой. Самоорганизация – это естественнонаучное выражение процесса самодвижения материи. Способностью к самоорганизации обладают системы живой и неживой природы, а также искусственные системы.

В современной научно обоснованной концепции системной организации материи обычно выделяют три структурных уровня материи:

  • микромир – мир атомов и элементарных частиц – предельно малых непосредственно ненаблюдаемых объектов, размерность от 10 -8 см до 10-16 см, а время жизни – от бесконечности до 10-24 с.
  • макромир – мир устойчивых форм и соразмерных человеку величин: земных расстояний и скоростей, масс и объемов; размерность макрообъектов соотносима с масштабами человеческого опыта – пространственные величины от долей миллиметра до километров и временные измерения от долей секунды до лет.
  • мегамир – мир космоса (планеты, звездные комплексы, галактики, метагалактики); мир огромных космических масштабов и скоростей, расстояние измеряется световыми годами, а время миллионами и миллиардами лет;

Изучение иерархии структурных уровней природы связано с решением сложнейшей проблемы определения границ этой иерархии как в мегамире, так и в микромире. Объекты каждой последующей ступени возникают и развиваются в результате объединения и дифференциации определенных множеств объектов предыдущей ступени. Системы становятся все более многоуровневыми. Сложность системы возрастает не только потому, что возрастает число уровней. Существенное значение приобретает развитие новых взаимосвязей между уровнями и со средой, общей для таких объектов и их объединений.

Микромир, будучи подуровнем макромиров и мегамиров, обладает совершенно уникальными особенностями и поэтому не может быть описан теориями, имеющими отношение к другим уровням природы. В частности, этот мир изначально парадоксален. Для него не применим принцип «состоит из». Так, при соударении двух элементарных частиц никаких меньших частиц не образуется. После столкновения двух протонов возникает много других элементарных частиц – в том числе протонов, мезонов, гиперонов. Феномен «множественного рождения» частиц объяснил Гейзенберг: при соударении большая кинетическая энергия превращается в вещество, и мы наблюдаем множественное рождение частиц. Микромир активно изучается. Если 50 лет назад было известно всего лишь 3 типа элементарных частиц (электрон и протон как мельчайшие частицы вещества и фотон как минимальная порция энергии), то сейчас открыто около 400 частиц. Второе парадоксальное свойство микромира связано с двойственной природой микрочастицы, которая одновременно является волной и корпускулой. Поэтому ее невозможно строго однозначно локализовать в пространстве и времени. Эта особенность отражена в принципе соотношения неопределенностей Гейзенберга.

Наблюдаемые человеком уровни организации материи осваиваются с учетом естественных условий обитания людей, т.е. с учетом наших земных закономерностей. Однако это не исключает предположения о том, что на достаточно удаленных от нас уровнях могут существовать формы и состояния материи, характеризующиеся совсем другими свойствами. В связи с этим ученые стали выделять геоцентрические и негеоцентрические материальные системы.

Геоцентрический мир – эталонный и базисный мир ньютонова времени и эвклидова пространства, описывается совокупностью теорий, относящихся к объектам земного масштаба. Негеоцентрические системы – особый тип объективной реальности, характеризующийся иными типами атрибутов, иным пространством, временем, движением, нежели земные. Существует предположение о том, что микромир и мегамир – это окна в негеоцентрические миры, а значит, их закономерности хотя бы в отдаленной степени позволяют представить иной тип взаимодействий, чем в макромире или геоцентрическом типе реальности.

Солнечная система в представлении художника. Масштабы расстояний от Солнца не соблюдены

Между мегамиром и макромиром нет строгой границы. Обычно полагают, что он начинается с расстояний около 10 7 и масс 10 20 кг. Опорной точкой начала мегамира может служить Земля. Поскольку мегамир имеет дело с большими расстояниями, то для их измерения вводят специальные единицы: астрономическая единица, световой год и парсек.

Астрономическая единица (а.е.) – среднее расстояние от Земли до Солнца.

Световой год – расстояние, которое проходит свет в течение одного года.

Парсек (параллакс-секунда) – расстояние, на котором годичный параллакс земной орбиты (т.е. угол, под которым видна большая полуось земной орбиты, расположенная перпендикулярно лучу зрения) равен одной секунде.

Небесные тела во Вселенной образуют системы различной сложности. Так Солнце и движущиеся вокруг него 9 планет образуют Солнечную систему. Основная часть звезд нашей галактики сосредоточена в диске, видимом с Земли «сбоку» в виде туманной полосы, пересекающей небесную сферу – Млечного Пути.

Все небесные тела имеют свою историю развития. Возраст Вселенной равен 14 млрд. лет. Возраст Солнечной системы оценивается в 5 млрд. лет, Земли – 4,5 млрд. лет.

Еще одна типология материальных систем имеет сегодня достаточно широкое распространение. Это деление природы на неорганическую и органическую, в которой особое место занимает социальная форма материи. Неорганическая материя – это элементарные частицы и поля, атомные ядра, атомы, молекулы, макроскопические тела, геологические образования. Органическая материя также имеет многоуровневую структуру: доклеточный уровень – ДНК, РНК, нуклеиновые кислоты; клеточный уровень – самостоятельно существующие одноклеточные организмы; многоклеточный уровень – ткани, органы, функциональные системы (нервная, кровеносная и др.), организмы (растения, животные); надорганизменные структуры – популяции, биоценозы, биосфера. Социальная материя существует лишь благодаря деятельности людей и включает особые подструктуры: индивид, семья, группа, коллектив, государство, нация и др.