Чехов

Как определяется точность приближенного значения величины. Приближённое значение. Относительная погрешность приближенного числа

Абсолютное значение разности между приближенным и точным (истинным) значением величины называется абсолютной погрешностью приближенного значения. Например , если точное число 1,214 округлить до десятых, то получим приближенное число 1,2 . В данном случае абсолютная погрешность приближенного числа составит 1,214 – 1,2 = 0,014 .

Но в большинстве случаев точное значение рассматриваемой величины неизвестно, а только приближенное. Тогда и абсолютная погрешность неизвестна. В этих случаях указывают границу , которую она не превышает. Это число называют граничной абсолютной погрешностью. Говорят, что точное значение числа равно его приближенному значению с погрешностью меньшей, чем граничная погрешность. Например , число 23,71 есть приближенное значение числа 23,7125 с точностью до 0,01 , так как абсолютная погрешность приближения равна 0,0025 и меньше 0,01 . Здесь граничная абсолютная погрешность равна 0,01 .*

(* Абсолютная погрешность бывает и положительной и отрицательной. Например , 1,68 ≈ 1,7 . Абсолютная погрешность равна 1,68 – 1,7 ≈ - 0,02 . Граничная погрешность всегда положительна).

Граничную абсолютную погрешность приближенного числа «а » обозначают символом Δа . Запись

х ≈ а ( Δа )

следует понимать так: точное значение величины х находится в промежутке между числами а а и а –Δа, которые называют соответственно нижней и верхней границей х и обозначают Н Гх и В Гх .

Например , если х ≈ 2,3 ( 0,1), то 2,2 < х < 2,4 .

Наоборот, если 7,3 < х < 7,4, то х ≈ 7,35 ( 0,05).

Абсолютная или граничная абсолютная погрешность не характеризуют качество выполненного измерения. Одна и та же абсолютная погрешность может считаться значительной и незначительной в зависимости от числа, которым выражается измеряемая величина.

Например , если измеряем расстояние между двумя городами с точностью до одного километра, то такая точность вполне достаточна для этого измерения, в то же время при измерении расстояния между двумя домами одной улицы такая точность будет недопустимой.

Следовательно, точность приближенного значения величины зависит не только от величины абсолютной погрешности, но и от значения измеряемой величины. Поэтому мерой точности служит относительная погрешность.

Относительной погрешностью называется отношение абсолютной погрешности к величине приближенного числа. Отношение граничной абсолютной погрешности к приближенному числу называют граничной относительной погрешностью ; обозначают её так: Δа/а . Относительную и граничную относительную погрешности принято выражать в процентах .

Например , если измерения показали, что расстояние между двумя пунктами больше 12,3 км , но меньше 12,7 км , то за приближенное значение его принимают среднее арифметическое этих двух чисел, т.е. их полусумму , тогда граничная абсолютная погрешность равна полуразности этих чисел. В данном случае х ≈ 12,5 ( 0,2). Здесь граничная абсолютная погрешность равна 0,2 км , а граничная

Для современных задач необходимо использовать сложный математический аппарат и развитые методы их решения. При этом часто приходится встречаться с задачами, для которых аналитическое решение, т.е. решение в виде аналитического выражения, связывающего исходные данные с требуемыми результатами, либо вообще невозможно, либо выражается такими громоздкими формулами, что использование их для практических целей нецелесообразно.

В этом случае применяются численные методы решения, которые позволяют достаточно просто получить численное решение поставленной задачи. Численные методы реализуются с помощью вычислительных алгоритмов.

Все многообразие численных методов подразделяют на две группы:

Точные – предполагают, что если вычисления ведутся точно, то с помощью конечного числа арифметических и логических операций могут быть получены точные значения искомых величин.

Приближенные– которые даже в предположении, что вычисления ведутся без округлений, позволяют получить решение задачи лишь с заданной точностью.

1. величина и число. Величиной называется то, что в определенных единицах может быть выражено числом.

Когда говорят о значении величины, то имеют в виду некоторое число, называемое числовым значением величины, и единицу ее измерения.

Таким образом, величиной называют характеристику свойства объекта или явления, которая является общей для множества объектов, но имеет индивидуальные значения для каждого из них.

Величины могут быть постоянными и переменными. Если при некоторых условиях величина принимает только одно значение и не может его изменять, то она называется постоянной, если же она может принимать различные значения, то – переменной. Так, ускорение свободного падения тела в данном месте земной поверхности есть величина постоянная, принимающая единственное числовое значение g=9,81… м/с2, в то время как путь s, проходимый материальной точкой при ее движении, – величина переменная.

2. приближенные значения чисел. Значение величины, в истинности которого мы не сомневаемся, называется точным. Часто, однако, отыскивая значение какой-либо величины, получают лишь ее приближенное значение. В практике вычислений чаще всего приходится иметь дело с приближенными значениями чисел. Так, p – число точное, но вследствие его иррациональности можно пользоваться лишь его приближенным значением.

Во многих задачах из-за сложности, а часто и невозможности получения точных решений применяются приближенные методы решения, к ним относятся: приближенное решение уравнений, интерполирование функций, приближенное вычисление интегралов и др.

Главным требованием к приближенным расчетам является соблюдение заданной точности промежуточных вычислений и конечного результата. При этом в одинаковой степени недопустимы как увеличение погрешностей (ошибок) путем неоправданного загрубления расчетов, так и удержание избыточных цифр, не соответствующих фактической точности.


Существуют два класса ошибок, получающихся при вычислениях и округлении чисел – абсолютные и относительные.

1. Абсолютная погрешность (ошибка).

Введем обозначения:

Пусть А – точное значение некоторой величины, Запись а » А будем читать "а приближенно равно А". Иногда будем писать А = а, имея в виду, что речь идет о приближенном равенстве.

Если известно, что а < А, то а называют приближенным значением величины А с недостатком. Если а > А, то а называют приближенным значением величины А с избытком.

Разность точного и приближенного значений величины называется погрешностью приближения и обозначается D, т.е.

D = А – а (1)

Погрешность D приближения может быть как числом положительным, так и отрицательным.

Для того чтобы охарактеризовать отличие приближенного значения величины от точного, часто бывает достаточно указать абсолютную величину разности точного и приближенного значений.

Абсолютная величина разности между приближенным а и точным А значениями числа называется абсолютной погрешностью (ошибкой) приближения и обозначается D а :

D а = ½а А ½ (2)

Пример 1. При измерении отрезка l использовали линейку, цена деления шкалы которой равна 0,5 см. Получили приближенное значение длины отрезка а = 204 см.

Понятно, что при измерении могли ошибиться не более, чем на 0,5 см, т.е. абсолютная погрешность измерения не превышает 0,5 см.

Обычно абсолютная ошибка неизвестна, поскольку неизвестно точное значение числа А. Поэтому в качестве ошибки принимают какую-либо оценку абсолютной ошибки:

D а <= D а пред . (3)

где D а пред . – предельная ошибка (число, большее нуля), задаваемая с учетом того, с какой достоверностью известно число а.

Предельная абсолютная погрешность называется также границей погрешности . Так, в приведенном примере,
D а пред . = 0,5 см.

Из (3) получаем: D а = ½а А ½<= D а пред . . и тогда

а – D а пред . ≤ А а + D а пред . . (4)

Значит, а – D а пред . будет приближенным значением А с недостатком, а а + D а пред приближенным значением А с избытком. Пользуются также краткой записью: А = а ± D а пред (5)

Из определения предельной абсолютной погрешности следует, что чисел D а пред , удовлетворяющих неравенству (3), будет бесконечное множество. На практике стараются выбратьвозможно меньшее из чисел D а пред , удовлетворяющих неравенству D а <= D а пред .

Пример 2. Определим предельную абсолютную погрешность числа а=3,14 , взятого в качестве приближенного значения числа π.

Известно, что 3,14<π<3,15. Отсюда следует, что

|а π |< 0,01.

За предельную абсолютную погрешность можно принять число D а = 0,01.

Если же учесть, что 3,14<π<3,142 , то получим лучшую оценку: D а = 0,002, тогда π ≈3,14 ±0,002.

Относительная погрешность (ошибка). Знания только абсолютной погрешности недостаточно для характеристики качества измерения.

Пусть, например, при взвешивании двух тел получены следующие результаты:

Р 1 = 240,3 ±0,1 г.

Р 2 = 3,8 ±0,1 г.

Хотя абсолютные погрешности измерения обоих результатов одинаковы, качество измерения в первом случае будет лучшим, чем во втором. Оно характеризуется относительной погрешностью.

Относительной погрешностью (ошибкой) приближения числа А называется отношение абсолютной ошибки D а приближения к абсолютной величине числа А:

Так, как точное значение величины обычно неизвестно, то его заменяют приближенным значением и тогда:

Предельной относительной погрешностью или границей относительной погрешности приближения, называется число d а пред. >0, такое, что:

d а <= d а пред.

За предельную относительную погрешность можно, очевидно, принять отношение предельной абсолютной погрешности к абсолютной величине приближенного значения:

Из (9) легко получается следующее важное соотношение:

а пред. = |a | d а пред.

Предельную относительную погрешность принято выражать в процентах:

Пример. Основание натуральных логарифмов для расчета принято равным е =2,72. В качестве точного значения взяли е т = 2,7183. Найти абсолютную и относительную ошибки приближенного числа.

D е = ½е е т ½=0,0017;

.

Величина относительной ошибки остается неизменной при пропорциональном изменении самого приближенного числа и его абсолютной ошибки. Так, у числа 634,7, рассчитанного с абсолютной ошибкой D = 1,3 и у числа 6347 с ошибкой D = 13 относительные ошибки одинаковы: d = 0,2.

Cтраница 2


Математические действия над приближенными значениями величин называются приближенными, вычислениями. К настоящему времени создана целая наука о приближенных вычислениях, с рядом положений которой мы познакомимся в дальнейшем.  

Результат измерения всегда дает приближенное значение величины. Это связано с неточностью самих измерений, неидеальной точностью измерительных приборов.  

Что называется относительной погрешностью приближенного значения величины.  

В табл. 25 приведены приближенное значения величин / Си / - д при различных амплитудах Um0 для [ диода 6X6, нагруженного сопротивлением R 0 5 мгом. Эта таблица составлена проф.  

В математических таблицах обычно даются приближенные значения величин. При этом считают, что абсолютная погрешность не превосходит половины единицы последнего разряда.  

При этом возникает необходимость находить приближенные значения величин при условии, что граница относительной погрешности не должна превышать наперед заданного значения. На данном занятии будут рассмотрены задачи такого типа.  

Если в данном точном или приближенном значении величины число цифр больше, чем это необходимо по практическим соображениям, то это число округляют. Операция округления чисел состоит в отбрасывании нескольких цифр младших разрядов и замене их нулями; при этом последнюю удерживаемую цифру оставляют без изменения, если первая отбрасываемая цифра меньше 5; если она равна или больше 5, то цифру последнего удерживаемого разряда увеличивают на единицу.  

Условимся считать, что в приближенном значении величины все цифры верные, если его абсолютная погрешность не превышает половины единицы последнего разряда.  

При таком округлении число, характеризующее приближенное значение величины, состоит из верных цифр, а цифра низшего разряда этого числа (последняя в записи) имеет точность 1 того же разряда. Например, запись т 3 68 кг означает т 3 68 0 01 кг, а запись т3 680 кг означает т3 680 0 001 кг.  

Из уравнения видно, что сумма приближенных значений величин А и сумма их погрешностей являются приближенным значением сумм величин X и их абсолютной ошибкой.  

N) в (1) обозначено приближенное значение величины y (xi, x0, г / о), получаемое рассматриваемым методом.  

Расчеты, как правило, производятся с приближенными значениями величин - приближенными числами. Разумная оценка погрешности при вычислениях позволяет указать оптимальное количество знаков, которые следует сохранять при расчетах, а также в окончательном результате.  

В результате счета можно получить или точное или приближенное значение величины. При этом достаточным признаком приг ближенности результата счета является наличие разных ответов при повторных подсчетах.  

В действительности, средняя арифметическая X даст ему лишь приближенное значение величины а xf, и если сама схема его опыта была неудовлетворительна или приборы плохо проверены (например, измерительная линейка вместо 1 м равна 0 999 мм), то, как бы точно наш наблюдатель ни нашел значение а, у него нет оснований считать, что X или а соответствуют истинному значению скорости звука, которая может быть наблюдаема в других самых разнообразных опытах. Основное допущение, которое должно было бы оправдать применение способа средней арифметической к физическим измерениям такого рода, состоит в предположении, что неизвестная величина а xf или, другими словами, что измерение (или вычисление) производится без систематической ошибки.  

На практике, измеряя площади, мы чаще всего пользуемся приближенными значениями величин.  

В практической деятельности человеку приходится измерять различные величины, учитывать материалы и продукты труда, производить различные вычисления. Результатами различных измерений, подсчетов и вычислений являются числа. Числа, полученные в результате измерения, лишь приблизительно, с некоторой степенью точности характеризуют искомые величины. Точные измерения невозможны ввиду неточности измерительных приборов, несовершенства наших органов зрения, да и сами измеряемые объекты иногда не позволяют определить их величину с любой точностью.

Так, например, известно, что длина Суэцкого канала 160 км, расстояние по железной дороге от Москвы до Ленинграда 651 км. Здесь мы имеем результаты измерений, произведенных с точностью до километра. Если, например, длина прямоугольного участка 29 м, ширина 12 м, то, вероятно, измерения произведены с точностью до метра, а долями метра пренебрегли,

Прежде чем произвести какое-либо измерение, необходимо решить, с какой точностью его нужно выполнить, т.е. какие доли единицы измерения надо при этом принять во внимание, а какими пренебречь.

Если имеется некоторая величина а, истинное значение которой неизвестно, а приближенное значение (приближение) этой величины равно х, то пишут а х .

При различных измерениях одной и той же величины будем получать различные приближения. Каждое из этих приближений будет отличаться от истинного значения измеряемой величины, равного, например, а, на некоторую величину, которую мы будем называть погрешностью. Определение. Если число x является приближенным значением (приближением) некоторой величины, истинное значение которой равно числу а, то модуль разности чисел, а и х называется абсолютной погрешностью данного приближения и обозначается a x : или просто a . Таким образом, по определению,

a x = a-x (1)

Из этого определения следует, что

a = x a x (2)

Если известно, о какой величине идет речь, то в обозначении a x индекс а опускается и равенство (2) записывается так:

a = x x (3)

Так как истинное значение искомой величины чаще всего бывает неизвестно, то нельзя найти и абсолютную погрешность приближения этой величины. Можно лишь указать в каждом конкретном случае положительное число, больше которого эта абсолютная погрешность быть не может. Это число называется границей абсолютной погрешности приближения величины a и обозначается h a . Таким образом, если x -- произвольное приближение величины а при заданной процедуре получения приближений, то

a x = a-x h a (4)

Из сказанного выше следует, что если h a является границей абсолютной погрешности приближения величины а , то и любое число, большее h a , также будет границей абсолютной погрешности приближения величины а .

На практике принято выбирать в качестве границы абсолютной погрешности возможно меньшее число, удовлетворяющее неравенству (4).

Решив неравенство a-x h a получим, что а заключено в границах

x - h a a x + h a (5)

Более строгое понятие границы абсолютной погрешности можно дать следующим образом.

Пусть X -- множество всевозможных приближений х величины а при заданной процедуре получения приближении. Тогда любое число h , удовлетворяющее условию a-x h a при любом хХ , называется границей абсолютной погрешности приближений из множества X . Обозначим через h a наименьшее из известных чисел h . Это число h a и выбирают на практике в качестве границы абсолютной погрешности.

Абсолютная погрешность приближения не характеризует качества измерений. Действительно, если мы измеряем с точностью до 1 см какую-либо длину, то в том случае, когда речь идет об определении длины карандаша, это будет плохая точность. Если же с точностью до 1 см определить длину или ширину волейбольной площадки, то это будет высокая точность.

Для характеристики точности измерения вводится понятие относительной погрешности.

Определение. Если a x : есть абсолютная погрешность приближения х некоторой величины, истинное значение которой равно числу а , то отношение a x к модулю числа х называется относительной погрешностью приближения и обозначается a x или x .

Таким образом, по определению,

Относительную погрешность обычно выражают в процентах.

В отличие от абсолютной погрешности, которая чаще всего бывает размерной величиной, относительная погрешность является безразмерной величиной.

На практике рассматривают не относительную погрешность, а так называемую границу относительной погрешности: такое число Е a , больше которого не может быть относительная погрешность приближения искомой величины.

Таким образом, a x Е a .

Если h a -- граница абсолютной погрешности приближений величины а , то a x h a и, следовательно,

Очевидно, что любое число Е , удовлетворяющее условию, будет границей относительной погрешности. На практике обычно известны некоторое приближение х величины а и граница абсолютной погрешности. Тогда за границу относительной погрешности принимают число

ПРИБЛИЖЕННЫЕ ЧИСЛА И ДЕЙСТВИЯ НАД НИМИ

  1. Приближенное значение величины. Абсолютная и относительная погрешности

Решение практических задач, как правило, связано с числовыми значениями величин. Эти значения получаются либо в результате измерения, либо в результате вычислений. В большинстве случаев значения величин, которыми приходится оперировать, являются приближенными.

Пусть X - точное значение некоторой величины, а х - наилучшее из известных ее приближенных значений. В этом случае погрешность (или ошибка) приближения х определяется разностью Х-х. Обычно знак этой ошибки не имеет решающего значения, поэтому рассматривают ее абсолютную величину:

Число в этом случае называется предельной абсолютной погрешностью, или границей абсолютной погрешности приближения х.

Таким образом, предельная абсолютная погрешность приближенного числа х - это всякое число, не меньшее абсолютной погрешности е х этого числа.

Пример: Возьмем число. Если же вызвать на индикатор 8-разрядного МК, получим приближение этого числа: Попытаемся выразить абсолютную погрешность значения. Получили бесконечную дробь, не пригодную для практических расчетов. Очевидно, однако, что следовательно, число 0,00000006 = 0,6 * 10 -7 можно считать предельной абсолютной погрешностью приближения, используемого МК вместо числа

Неравенство (2) позволяет установить приближения к точному значению X по недостатку и избытку:

Во многих случаях значения границы абсолютной ошибки так же как и наилучшие значения приближения х , получаются на практике в результате измерений. Пусть, например, в результате повторных измерений одной и той же величины х получены значения: 5,2; 5,3; 5,4; 5,3. В этом случае естественно принять за наилучшее приближение измеряемой величины среднее значение х = 5,3. Очевидно также, что граничными значениями величины х в данном случае будут НГ Х = 5,2, ВГ Х = 5,4, а граница абсолютной погрешности х может быть определена как половина длины интервала, образуемого граничными значениями НГ Х и ВГ Х ,

т.е.

По абсолютной погрешности нельзя в полной мере судить о точности измерений или вычислений. Качество приближения характеризуется величиной относительной погрешности, которая определяется как отношение ошибки е х к модулю значения X (когда оно неизвестно, то к модулю приближения х ).

Предельной относительной погрешностью (или границей относительной погрешности) приближенного числа называется отношение предельной абсолютной погрешности к абсолютному значению приближения х :

Относительную погрешность выражают обычно в процентах.

Пример Определим предельные погрешности числа х=3,14 как приближенного значения π. Так как π=3,1415926…., то |π-3,14|

  1. Верные и значащие цифры. Запись приближенных значений

Цифра числа называется верной (в широком смысле), если ее абсолютная погрешность не превосходит единицы разряда, в котором стоит эта цифра.

Пример. Х=6,328 Х=0,0007 X

Пример: А). Пусть 0 = 2,91385, В числе а верны в широком смысле цифры 2, 9, 1.

Б) Возьмем в качестве приближения к числу = 3,141592... число = 3,142. Тогда (рис.) откуда следует, что в приближенном значении = 3,142 все цифры являются верными.

В) Вычислим на 8-разрядном МК частное точных чисел 3,2 и 2,3, получим ответ: 1,3913043. Ответ содержит ошибку, поскольку

Рис. Приближение числа π

разрядная сетка МК не вместила всех цифр результата и все разряды начиная с восьмого были опущены. (В том, что ответ неточен, легко убедиться, проверив деление умножением: 1,3913043 2,3 = 3,9999998.) Не зная истинного значения допущенной ошибки, вычислитель в подобной ситуации всегда может быть уверен, что ее величина не превышает единицы самого младшего из изображенных на индикаторе разряда результата. Следовательно, в полученном результате все цифры верны.

Первая отброшенная (неверная) цифра часто называется сомнительной.

Говорят, что приближенное данное записано правильно, если в его записи все цифры верные. Если число записано правильно, то по одной только его записи в виде десятичной дроби можно судить о точности этого числа. Пусть, например, записано приближенное число а = 16,784, в котором все цифры верны. Из того, что верна последняя цифра 4, которая стоит в разряде тысячных, следует, что абсолютная погрешность значения а не превышает 0,001. Это значит, что можно принять т.е. а = 16,784±0,001.

Очевидно, что правильная запись приближенных данных не только допускает, но и обязывает выписывать нули в последних разрядах, если эти нули являются выражением верных цифр. Например, в записи = 109,070 нуль в конце означает, что цифра в разряде тысячных верна и она равна нулю. Предельной абсолютной погрешностью значения , как следует из записи, можно считать Для сравнения можно заметить, что значение с = 109,07 является менее точным, так как из его записи приходится принять, что

Значащими цифрами в записи числа называются все цифры в его десятичном изображении, отличные от нуля, и нули, если они расположены между значащими цифрами или стоят в конце для выражения верных знаков.

Пример а) 0,2409 - четыре значащие цифры; б) 24,09 - четыре значащие цифры; в) 100,700 - шесть значащих цифр.

Выдача числовых значений в ЭВМ, как правило, устроена таким образом, что нули в конце записи числа, даже если они верные, не сообщаются. Это означает, что если, например, ЭВМ показывает результат 247,064 и в то же время известно, что в этом результате верными должны быть восемь значащих цифр, то полученный ответ следует дополнить нулями: 247,06400.

В процессе вычислений часто происходит округление чисел, т.е. замена чисел их значениями с меньшим количеством значащих цифр. При округлении возникает погрешность, называемая погрешностью округления. Пусть х - данное число, а х 1 - результат округления. Погрешность округления определяется как модуль разности прежнего и нового значений числа:

В отдельных случаях вместо ∆ окр приходится использовать его верхнюю оценку.

Пример Выполним на 8-разрядном МК действие 1/6. На индикаторе высветится число 0,1666666. Произошло автоматическое округление бесконечной десятичной дроби 0,1(6) до числа разрядов, вмещающихся в регистре МК. При этом можно принять

Цифра числа называется верной в строгом смысле, если абсолютная погрешность этого числа не превосходит половины единицы разряда, в котором стоит эта цифра.

Правила записи приближенных чисел.

  1. Приближенные числа записываются в форме х ±  х. Запись X = х ±  x означает, что неизвестная величина X удовлетворяет следующим неравенствам: x-  x  x

При этом погрешность  х рекомендуется подбирать так, чтобы

а) в записи  х было не более 1-2 значащих цифр;

б) младшие разряды в записи чисел х и  х соответствовали друг другу.

Примеры: 23,4±0,2 ; 2,730±0,017 ; -6,97  0,10.

  1. Приближенное число может быть записано без явного указания его предельной абсолютной погрешности. В этом случае в его записи (мантиссе) должны присутствовать только верные цифры (в широком смысле, если не сказано обратное). Тогда по самой записи числа можно судить о его точности.

Примеры. Если в числе А=5,83 все цифры верны в строгом смысле, то А=0,005. Запись В=3,2 подразумевает, что В=0,1. А по записи С=3,200 мы можем заключить, что С=0,001. Таким образом, записи 3,2 и 3,200 в теории приближенных вычислений означают не одно и то же.

Цифры в записи приближенного числа, о которых нам неизвестно, верны они или нет, называются сомнительными. Сомнительные цифры (одну-две) оставляют в записи чисел промежуточных результатов для сохранения точности вычислений. В окончательном результате сомнительные цифры отбрасываются.

Округление чисел.

  1. Правило округления. Если в старшем из отбрасываемых разрядов стоит цифра меньше пяти, то содержимое сохраняемых разрядов числа не изменяется. В противном случае в младший сохраняемый разряд добавляется единица с тем же знаком, что и у самого числа.
  2. При округлении числа, записанного в форме х± х, его предельная абсолютная погрешность увеличивается с учетом погрешности округления.

Пример: Округлим до сотых число 4,5371±0,0482. Неправильно было бы записать 4,54±0,05 , так как погрешность округленного числа складывается из погрешности исходного числа и погрешности округления. В данном случае она равна 0,0482 + 0,0029 = 0,0511 . Округлять погрешности всегда следует с избытком, поэтому окончательный ответ: 4,54±0,06.

Пример Пусть в приближенном значении а = 16,395 все цифры верны в широком смысле. Округлим а до сотых: a 1 = 16,40. Погрешность округления Для нахождения полной погрешности, нужно сложить c погрешностью исходного значения а 1 которая в данном случае может быть найдена из условия, что все цифры в записи а верны: = 0,001. Таким образом, . Отсюда следует, что в значении a 1 = 16,40 цифра 0 не верна в строгом смысле.

  1. Вычисление погрешностей арифметических действий

1. Сложение и вычитание . Предельной абсолютной погрешностью алгебраической суммы является сумма соответствующих погрешностей слагаемых:

Ф.1  (X+Y) =  Х +  Y ,  (X-Y) =  Х +  Y .

Пример. Даны приближенные числа Х = 34,38 и Y = 15,23 , все цифры верны в строгом смысле. Найти  (X-Y) и  (X-Y). По формуле Ф.1 получаем:

 (X-Y) = 0,005 + 0,005 = 0,01.

Относительную погрешность получим по формуле связи:

2. Умножение и деление. Если  Х  Y

Ф.2  (X · Y) =  (X/Y) =  X +  Y.

Пример . Найти  (X·Y) и  (X·Y) для чисел из предыдущего примера. Сначала с помощью формулы Ф.2 найдем  (X·Y):

 (X·Y)=  X +  Y=0,00015+0,00033=0,00048

Теперь  (X·Y) найдем с помощью формулы связи:

 (X·Y) = |X·Y|·  (X·Y) = |34,38 -15,23|·0,00048  0,26 .

3. Возведение в степень и извлечение корня . Если  Х

Ф.З

4. Функция одной переменной.

Пусть даны аналитическая функция f(x) и приближенное число с ±  с. Тогда, обозначая через малое приращение аргумента, можно написать

Если f "(с)  0, то приращение функции f(с+ ) - f(c) можно оценить ее дифференциалом:

f(c+  ) - f(c)  f "(c) ·  .

Если погрешность  с достаточно мала, получаем окончательно следующую формулу:

Ф.4  f(c) = |f "(с)|·  с.

Пример. Даны f(x) = arcsin x , с = 0,5 , с = 0,05 . Вычислить  f(с).

Применим формулу Ф.4:

И т. д.

5. Функция нескольких переменных.

Для функции нескольких переменных f(x1, ... , хn) при xk= ck ±  ck справедлива формула, аналогичная Ф.4:

Ф.5  f(c1, ... ,сn)  l df(c1, ... ,сn) | = |f "x1 (с1)|·  с1+... + |f "xn (сn)|·  сn.

Пример Пусть х = 1,5, причем т.е. все цифры в числе х верны в строгом смысле. Вычислим значение tg x . С помощью МК получаем: tgl,5= 14,10141994. Для определения верных цифр в результате оценим его абсолютную погрешность: отсюда следует, что в полученном значении tgl,5 ни одну цифру нельзя считать верной.

  1. Методы оценки погрешности приближенных вычислений

Существуют строгие и нестрогие методы оценки точности результатов вычислений.

1. Строгий метод итоговой оценки . Если приближенные вычисления выполняются по сравнительно простой формуле, то с помощью формул Ф.1-Ф.5 и формул связи погрешностей можно вывести формулу итоговой погрешности вычислений. Вывод формулы и оценка погрешности вычислений с ее помощью составляют суть данного метода.

Пример Значения a = 23,1 и b = 5,24 даны цифрами, верными в строгом смысле. Вычислить значение выражения

С помощью МК получаем В = 0,2921247. Используя формулы относительных погрешностей частного и произведения, запишем:

Т.е.

Пользуясь МК, получим 5, что дает. Это означает, что в результате две цифры после запятой верны в строгом смысле: В=0,29±0,001.

2. Метод строгого пооперационного учета погрешностей . Иногда попытка применения метода итоговой оценки приводит к слишком громоздкой формуле. В этом случае более целесообразным может оказаться применение данного метода. Он заключается в том, что оценивается точность каждой операции вычислений отдельно с помощью тех же формул Ф.1-Ф.5 и формул связи.

3. Метод подсчета верных цифр . Данный метод относится к нестрогим. Оценка точности вычислений, которую он дает, в принципе не гарантирована (в отличие от строгих методов), но на практике является довольно надежной. Суть метода заключается в том, что после каждой операции вычислений в полученном числе определяется количество верных цифр с помощью нижеследующие правил.

П.1 . При сложении и вычитании приближенных чисел в результате верными следует считать, те цифры, десятичным разрядам которых соответствуют верные цифры во всех слагаемых. Цифры всех других разрядов кроме самого старшего из них перед выполнением сложения или вычитания должны быть округлены во всех слагаемых.

П.2. При умножении и делении приближенных чисел в результате верными следует считать столько значащих цифр, сколько их имеет приближенное данное с наименьшим количеством верных значащих цифр. Перед выполнением этих действий среди приближенных данных нужно выбрать число с наименьшим количеством значащих цифр и округлить остальные числа так, чтобы они имели лишь на одну значащую цифру больше него.

П.З. При возведении в квадрат или в куб, а также при извлечении квадратного или кубического корня в результате следует считать верными столько значащих цифр, сколько имелось верных значащих цифр в исходном числе.

П.4. Количество верных цифр в результате вычисления функции зависит от величины модуля производной и от количества верных цифр в аргументе. Если модуль производной близок к числу 10k (k - целое), то в результате количество верных цифр относительно запятой на k меньше (если k отрицательно, то - больше), чем их было в аргументе. В данной лабораторной работе для определенности примем соглашение считать модуль, производной близким к 10k , если имеет место неравенство:

0,2·10K  2·10k .

П.5. В промежуточных результатах помимо верных цифр следует оставлять одну сомнительную цифру (остальные сомнительные цифры можно округлять) для сохранения точности вычислений. В окончательном результате оставляют только верные цифры.

Вычисления по методу границ

Если нужно иметь абсолютно гарантированные границы возможных значений вычисляемой величины, используют специальный метод вычислений - метод границ.

Пусть f(x, у) - функция, непрерывная и монотонная в некоторой области допустимых значений аргументов х и у. Нужно получить ее значение f(a, b), где а и b - приближенные значения аргументов, причем достоверно известно, что

НГ a a a ; НГ b ВГ b .

Здесь НГ, ВГ - обозначения соответственно нижней и верхней границ значений параметров. Итак, вопрос состоит в том, чтобы найти строгие границы значения f(a, b), при известных границах значений а и b.

Допустим, что функция f(x, у) возрастает по каждому из аргументов x и y . Тогда

f (НГ а , НГ b f (a , b )f (ВГ a ВГ b ).

Пусть f(x, у) возрастает по аргументу х и убывает по аргументу у . Тогда будет строго гарантировано неравенство