Биографии

Процессы гибели и размножения примеры. Процесс «гибели и размножения. Вопросы для самоконтроля

В теории массового обслуживания широкое распространение имеет специальный класс случайных процессов – так называемый процесс гибели и размножения. Название этого процесса связано с рядом биологических задач, где он является математической моделью изменения численности биологических популяций.

Граф состояний процесса гибели и размножения имеет вид, показанный на рис. 15.4.

Рис. 15.4

Рассмотрим упорядоченное множество состояний системыПереходы могут осуществляться из любого состояния только в состояния с соседними номерами, т.е. из состояниявозможны переходы только либо в состояние, либо в состояние .

Предположим, что все потоки событий, переводящие систему по стрелкам графа, простейшие с соответствующими интенсивностямиили

По графу, представленному на рис. 15.4, составим и решим алгебраические уравнения для предельных вероятностей состояний (их существование вытекает из возможности перехода из каждого состояния в каждое другое и конечности числа состояний).

В соответствии с правилом составления таких уравнений (см. 15.10) получим: для состояния S 0

для состояния S,

Которое с учетом (15.12) приводится к виду

Аналогично, записывая уравнения для предельных вероятностей других состояний, можно получить следующую систему уравнений:

(15.14)

к которой добавляется нормировочное условие

Решая систему (15.14), (15.15), можно получить

(15.16)

Легко заметить, что в формулах (15.17) для коэффициенты при есть слагаемые, стоящие после единицы в формуле (15.16). Числители этих коэффициентов представляют произведение всех интенсивностей, стоящих у стрелок, ведущих слева направо до данного состояния , а знаменатели – произведение всех интенсивностей,стоящих у стрелок, ведущих справа налево из состояниядо.

15.4. Процесс гибели и размножения представлен графом (рис. 15.5). Найти предельные вероятности состояний.

Рис. 15.5

Решение. По формуле (15.16) найдем

по (15.17) т.е. в установившемся, стационарном режиме в среднем 70,6% времени система будет находиться в состоянии 5(), 17,6% – в состоянии 5, и 11,8% – в состоянии S2.

СМО с отказами

В качестве показателей эффективности СМО с отказами будем рассматривать:

А абсолютную пропускную способность СМО, т.е. среднее число заявок, обслуживаемых в единицу времени;

Q – относительную пропускную способность, т.е. среднюю долю пришедших заявок, обслуживаемых системой;

Р тк – вероятность отказа, т.е. того, что заявка покинет СМО необслуженной;

k – среднее число запятых каналов (для многоканальной системы).

Одноканальная система с отказами. Рассмотрим задачу.

Имеется один канал, на который поступает поток заявок с интенсивностью λ. Поток обслуживаний имеет интенсивность μ . Найти предельные вероятности состояний системы и показатели ее эффективности.

Система 5 (СМО) имеет два состояния: 50 – канал свободен, 5, – канал занят. Размеченный граф состояний представлен на рис. 15.6.

При установлении в СМО предельного, стационарного режима процесса система алгебраических уравнений для вероятностей состояний имеет вид (см. правило составления таких уравнений на с. 370):

т.е. система вырождается в одно уравнение. Учитывая нормировочное условие р 0х = 1, найдем из (15.18) предельные вероятности состояний

(15.19)

которые выражают среднее относительное время пребывания системы в состоянии 50 (когда канал свободен) и 5, (когда канал занят), т.е. определяют соответственно относительную пропускную способность Q системы и вероятность отказа:

Абсолютную пропускную способность найдем, умножив относительную пропускную способность Q на интенсивность потока заявок

15.5. Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью λ, равной 90 заявок в час, а средняя продолжительность разговора по телефонумин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решение. Имеем λ = 90 (1 /ч),мин. Интенсивность потока обслуживании μ = 1/ίο6 = 1/2 = 0,5 (1/мин) = = 30 (1/ч). По (15.20) относительная пропускная способность СМО Q = 30/(90 + 30) = 0,25, т.е. в среднем только 25% поступающих заявок составят переговоры по телефону. Соответственно, вероятность отказа в обслуживании составит Р тк = 0,75 (см. (15.21)). Абсолютная пропускная способность СМО но (15.22) А = 90 ∙ 0,25 = 22,5, т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.

Многоканальная система с отказами. Рассмотрим классическую задачу Эрланга.

Имеется п каналов, на которые поступает поток заявок с интенсивностью λ. Поток обслуживаний каждого канала имеет интенсивность μ. Найти предельные вероятности состояний системы и показатели ее эффективности.

Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе):

где– состояние системы, когда в ней находится k заявок, т.е. занято k каналов.

Граф состояний СМО соответствует процессу гибели и размножения и показан на рис. 15.7.

Рис. 15.7

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью λ. Интенсивность же потока обслуживаний, переводящих систему из любого правого состояния в соседнее левое, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S., (два канала заняты), то она может перейти в состояние 5, (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживаний будет 2μ. Аналогично суммарный поток обслуживаний, переводящий СМО из состояния 53 (три канала заняты) в 52, будет иметь интенсивность 3μ, т.е. может освободиться любой из трех каналов и т.д.

В формуле (15.16) для схемы гибели и размножения получим для предельной вероятности состояния

(15.23)

где члены разложениябудут представлять собой коэффициенты при р а в вы́ражениях для предельных вероятностейВеличина

называется приведенной интенсивностью потока заявок, или интенсивностью нагрузки канала. Она выражает среднее число заявок, приходящих за среднее время обслуживания одной заявки. Теперь

(15.25)

Формулы (15.25) и (15.26) для предельных вероятностей получили названия формул Эрланга в честь основателя теории массового обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все п каналов системы будут заняты, т.е.

Относительная пропускная способность – вероятность того, что заявка будет обслужена:

(15.28)

Абсолютная пропускная способность:

(15.29)

Среднее число (математическое ожидание числа) занятых каналов:

где/;, – предельные вероятности состояний, определяемых но формулам (15.25), (15.26).

Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность системы А есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем μ заявок (в единицу времени), то среднее число занятых каналов

или, учитывая (15.29), (15.24):

15.6. В условиях задачи 15.5 определить оптимальное число телефонных номеров в телевизионном ателье, если условием оптимальности считать удовлетворение в среднем из каждых 100 заявок нс менее 90 заявок на переговоры.

Решение. Интенсивность нагрузки канала по формуле (15.24) р = 90/30 = 3, т.е. за время среднего (по продолжительности) телефонного разговора 7об = 2 мин поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) п = 2, 3, 4, ... и определим по формулам (15.25–15.29) для получаемой и-канальной СМО характеристики обслуживания. Например, при п = 2 р 0 = = (1 + 3 + 32/2!)“" =0,118 ≈ 0,12; Q = 1 – (з2/2l) – 0,118 = 0,47. А = 90 ∙ 0,47 = 42,3 и т.д. Значения характеристик СМО сведем в табл. 15.1.

Таблица 15.1

По условию оптимальности Q > 0,9, следовательно, в телевизионном ателье необходимо установить 5 телефонных номеров (в этом случае Q = 0,90 – см. табл. 15.1). При этом в час будут обслуживаться в среднем 80 заявок = 80,1), а среднее число занятых телефонных номеров (каналов) по формуле (15.30) к = 80,1/30 = 2,67.

15.7. В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Решение. По условию п = 3, λ = 0,25 (1 /ч),^ = 3 (ч). Интенсивность потока обслуживаний μ=1/ίο6 =1/3 = = 0,33. Интенсивность нагрузки ЭВМ по формуле (15.24) р = 0,25/0,33 = 0,75. Найдем предельные вероятности состояний:

по формуле (15.25) р0 = (1 + 0,75 + 0,752/2!+ 0,753/3!) = 0,476;

по формуле (15.26) р, =0,75 0,476 = 0,357; р 2 = (θ,752/2ΐ)χ хО,476 = 0,134; р 3 = (θ,753/3ΐ) 0,476 = 0,033, т.е. в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% – имеется одна заявка (занята одна ЭВМ), 13,4% – две заявки (две ЭВМ), 3,3% – три заявки (заняты три ЭВМ).

Вероятность отказа (когда заняты все три ЭВМ), таким образом, Ртк = р 3 = 0,033.

По формуле (15.28) относительная пропускная способность центра <2= 1 – 0,033 = 0,967, т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.

По формуле (15.29) абсолютная пропускная способность центра А = 0,25-0,967 = 0,242, т.е. в один час в среднем обслуживается 0,242 заявки.

По формуле (15.30) среднее число занятых ЭВМ к = = 0,242/0,33 = 0,725, т.е. каждая из трех ЭВМ будет занята обслуживанием заявок в среднем лишь на 72,5/3 = 24,2%.

При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих ЭВМ (с одной стороны, у нас высокая пропускная способность СМО, а с другой стороны – значительный простой каналов обслуживания) и выбрать компромиссное решение.

Процессы размножения и гибели являются частным случаем марковских случайных процессов, которые тем не менее находят весьма широкое применение при исследовании дискретных систем со стохастическим характером функционирования. Процесс размножения и гибели представляет собой марковский случайный процесс, в котором переходы из состояния E i допустимы только в соседние состоянияE i- 1 ,E i иE i+1 . Процесс размножения и гибели является адекватной моделью для описания изменений, происходящих в объеме биологических популяций. Следуя этой модели, говорят, что процесс находится в состоянииE i , если объем популяции равенi членам. При это переход из состоянияE i в состояниеE i +1 соответствует рождению, а переход изE i вE i-1 - гибели, предполагая, что объем популяции может изменяться не более чем на единицу; это означает, что для процессов размножения и гибели не допускаются многократные одновременные рождения и/или гибели.

Дискретные процессы размножения и гибели менее интересны, чем непрерывные, поэтому в дальнейшем они подробно не рассматриваются и основное внимание уделяется непрерывным процессам. Однако следует отметить, что для дискретных процессов проходят почти параллельные выкладки. Переход процесса размножения и гибели из состояния E i обратно в состояниеE i представляет непосредственный интерес только для дискретных цепей Маркова; в непрерывном случае интенсивность, с которой процесс возвращается в текущее состояние, равна бесконечности, и эта бесконечность была исключена согласно определению (13).

В случае процесса размножения и гибели с дискретным временем вероятности переходов между состояниями

Здесь d i - вероятность того, что на следующем шаге (в терминах биологической популяции) произойдет одна гибель, уменьшающая объем популяции доi -1 при условии, что на данном шаге объем популяции равенi . Аналогично,b i - вероятность рождения на следующем шаге, приводящего к увеличению объема популяции доi +1; 1-d i -b i представляет собой вероятность того, что ни одно из этих событий не произойдет и на следующем шаге объем популяции не изменится. Допускаются только эти три возможности. Ясно, чтоd 0 =0, так как гибель не может наступить, если некому погибать.

Однако в противовес интуиции допускается, что b 0 >0, что соответствует возможности рождения, когда в популяции нет ни одного члена. Хотя это можно расценивать как спонтанное рождение или божественное творение, но в теории дискретных систем такая модель представляет собой вполне осмысленное допущение. А именно, модель такова: популяция представляет собой поток требований, находящихся в системе, гибель означает уход требования из системы, а рождение соответствует поступлению в систему нового требования. Ясно, что в такой модели вполне возможно поступление нового требования (рождение) в свободную систему. Матрица вероятностей переходов для общего процесса размножения и гибели имеет следующий вид:

Т =

Если цепь Маркова является конечной, то последняя строка матрицы записывается в виде ; это соответствует тому, что не допускаются никакие размножения после того, как популяция достигает максимального объемаn .

Матрица T содержит нулевые члены только на главной и двух ближайших к ней диагоналях. Из-за такого частного вида матрицыT естественно ожидать, что анализ процесса размножения и гибели не должен вызывать трудностей.

Далее будем рассматривать только непрерывные процессы размножения и гибели, в которых переходы из состояния E i возможны только в соседние состоянияE i-1 (гибель) иE i+1 (рождение). Обозначим через i интенсивность размножения; она описывает скорость, с которой происходит размножение в популяции объемаi . Аналогично, через i обозначим интенсивность гибели, задающую скорость с которой происходит гибель в популяции объемаi . Заметим, что введенные интенсивности размножения и гибели не зависят от времени, а зависят только от состоянияE i , следовательно, получаем непрерывную однородную цепь Маркова типа размножения и гибели. Эти специальные обозначения введены потому, что они непосредственно приводят к обозначениям, принятым в теории дискретных систем. В зависимости от ранее введенных обозначений имеем:

i = q i , i +1 и i = q i , i -1 .

Требование о допустимости переходов только в ближайшие соседние состояния означает, что исходя из (14), q ii =-( i + i ). Таким образом, матрица интенсивностей переходов общего однородного процесса размножения и гибели принимает вид

Q =

Заметим, что за исключением главной и соседних с ней снизу и сверху диагоналей все элементы матрицы равны нулю. Соответствующий граф интенсивностей переходов представлен на рис. 4.

Более точное определение непрерывного процесса размножения и гибели состоит в следующем: некоторый процесс представляет собой процесс размножения и гибели, если он является однородной цепью Маркова с множеством состояний {E 0 ,E 1 ,E 2 , …}, если рождение и гибель являются независимыми событиями (это вытекает непосредственно из марковского свойства) и если выполняют следующие условия:


Согласно этим предположениям кратные рождения, кратные гибели и одновременные рождения и гибели в течение малого промежутка времени (t ,t + Δt ) запрещены в том смысле, что вероятность таких кратких событий имеет порядоко t ).

Вероятность того, что непрерывный процесс размножения и гибели в момент времени t находится в состоянииE i (объем популяции равенi ) определяется напрямую из (16) в виде

Для решения полученной системы дифференциальных уравнений в нестационарном случае, когда вероятности P i (t ),i =0,1,2,…, зависят от времени, необходимо задать распределение начальных вероятностейP i (0),i =0,1,2,…, приt =0. Кроме того, должно удовлетворяться нормировочное условие.

Рис.4. Граф интенсивностей переходов для процесса размножения и гибели.

Рассмотрим теперь простейший процесс чистого размножения, который определяется как процесс, для которого i = 0 при всехi . Кроме того, для еще большего упрощения задачи предположим, что i =для всехi =0,1,2,... . Подставляя эти значения в уравнения (18) получим

Для простоты предположим также, что процесс начинается в нулевой момент при нуле членов, то есть:

Отсюда для P 0 (t ) получаем решение

P 0 (t )=e - t .

Подставляя это решение в уравнение (19) при i = 1, приходим к уравнению

.

Решение этого дифференциального уравнения, очевидно, имеет вид

P 1 (t )= te - t .

.

Это знакомое нам распределение Пуассона. Таким образом, процесс чистого размножения с постоянной интенсивностью приводит к последовательности рождений, образующей пуассоновский процесс.

Наибольший интерес в практическом плане представляют вероятности состояний процесса размножения и гибели в установившемся режиме. Предполагая, что процесс обладает эргодическим свойством, т.е. существуют пределы
перейдем к определению предельных вероятностейP i .

Уравнения для определения вероятностей стационарного режима можно получить непосредственно из (18), учитывая, что dP i (t )/dt = 0 при
:

Полученная система уравнений решается с учетом нормировочного условия

Систему уравнений (21) для установившегося режима процесса размножения и гибели можно составить непосредственно по графу интенсивностей переходов на рис.4, применяя принцип равенства потоков вероятностей к отдельным состоянием процесса. Например, если рассмотреть состояние E i в установившемся режиме, то:

интенсивность потока вероятностей в и

интенсивность потока вероятностей из
.

В состоянии равновесия эти два потока должны быть равны, и поэтому непосредственно получаем

Но это как раз и есть первое равенство в системе (21). Аналогично можно получить и второе равенство системы. Те же самые рассуждения о сохранении потока, которые были приведены ранее, могут быть применены к потоку вероятностей через любую замкнутую границу. Например, вместо того, чтобы выделять каждое состояние и составлять для него уравнение, можно выбрать последовательность контуров, первый из которых охватывает состояние E 0 , второй - состояниеE 0 иE 1 , и т.д., включая каждый раз в новую границу очередное состояние. Тогда дляi -го контура (окружающего состоянияE 0 ,E 1 , ...,E i -1 ) условие сохранения потока вероятностей можно записать в следующем простом виде:

.

Полученная система уравнений эквивалентна выведенной ранее. Для составления последней системы уравнений нужно провести вертикальную линию, разделяющую соседние состояния, и приравнять потоки через образовавшуюся границу.

Решение системы (23) можно найти методом математической индукции.

При i =1 имеем:

при i =2:

при i =3:

и т.д.

Вид полученных равенств показывает, что общее решение системы уравнений (23) имеет вид

или, учитывая, что, по определению, произведение по пустому множеству равно единице

Таким образом, все вероятности P i для установившегося режима выражаются через единственную неизвестную константуP 0 . Равенство (22) дает дополнительное условие, позволяющее определитьP 0 . Тогда, суммируя по всемi , дляP 0 получим:

Обратимся к вопросу о существовании стационарных вероятностей P i . Для того, чтобы полученные выражения задавали вероятности, обычно накладывается требование, чтобыP 0 > 0. Это, очевидно, налагает ограничение на коэффициенты размножения и гибели в соответствующих уравнениях. По существу требуется, чтобы система иногда опустошалась; это условие стабильности представляется весьма резонным, если обратиться к примерам реальной жизни. Определим следующие две суммы:

Все состояния E i рассматриваемого процесса размножения и гибели будут эргодическими тогда и только тогда, когдаS 1 <иS 2 =. Только эргодический случай приводит к установившимся вероятностямP i ,i = 0, 1, 2, …, и именно этот случай представляет интерес. Заметим, что условия эргодичности выполняются только тогда, когда, начиная с некоторогоi , все члены последовательности {
} ограничены единицей, т.е. тогда, когда существует некотороеi 0 (и некотороеС <1) такое, что для всехii 0 выполняется неравенство:

1Символo(t ) ("o" малое отt ) означает произвольную функцию, которая приt 0,стремится к нулю быстрее, чемt , т.е.
.

класс систем, которые меняют свои состояния в случайные моменты времени . Как и в предыдущем случае, в этих системах рассматривается процесс с дискретными состояниями . Например, переход объекта от исправного состояния к неисправному, соотношение сил сторон в ходе боя и т. п. Оценка эффективности таких систем определяется с помощью вероятностей каждого состояния на любой момент времени , .

Чтобы определить вероятности состояния системы для любого момента времени необходимо воспользоваться математическими моделями марковских процессов с непрерывным временем (непрерывных марковских процессов).

При моделировании состояния систем с непрерывными марковскими процессами мы уже не можем воспользоваться переходными вероятностями , так как вероятность "перескока" системы из одного состояния в другое точно в момент времени равна нулю (как вероятность любого отдельного значения непрерывной случайной величины).

Поэтому вместо переходных вероятностей вводятся в рассмотрение плотности вероятностей переходов :

где - вероятность того, что система, находившаяся в момент времени в состоянии за время перейдет в состояние .

С точностью до бесконечно малых второго порядка из приведенной формулы можно представить:

Непрерывный марковский процесс называется однородным ,если плотности вероятностей переходов не зависят от времени (от момента начала промежутка ). В противном случае непрерывный марковский процесс называется неоднородным .

Целью моделирования , как и в случае дискретных процессов, является определение вероятностей состояний системы . Эти вероятности находятся интегрированием системы дифференциальных уравнений Колмогорова.

Сформулируем методику моделирования по схеме непрерывных марковских процессов.

Пример 2.2 . Составить систему дифференциальных уравнений Колмогорова для нахождения вероятностей состояний системы, размеченный граф состояний которой представлен на рис. 2.3 .


Рис. 2.3.

Решение

Очевидно, .

Поэтому любое из первых трех уравнений можно исключить, как линейно зависимое.

Для решения уравнений Колмогорова необходимо задать начальные условия. Для рассмотренного примера 2.2, можно задать такие начальные условия: , .

Однородный марковский процесс с непрерывным временем можно трактовать как процесс смены состояний под влиянием некоторого потока событий. То есть плотность вероятности перехода можно трактовать как интенсивность потока событий, переводящих систему из -го состояния в -е. Такими потоками событий являются отказы техники, вызовы на телефонной станции, рождение и т. п.

При исследовании сложных объектов всегда интересует: возможен ли в исследуемой системе установившейся (стационарный) режим? То есть, как ведет себя система при ? Существуют ли предельные значения ? Как правило, именно эти предельные значения интересуют исследователя.

Ответ на данный вопрос дает теорема Маркова.

Если для однородного дискретного марковского процесса с конечным или счетным числом состояний все , то предельные значения существуют и их значения не зависят от выбранного начального состояния системы.

Применительно к непрерывным марковским процессам теорема Маркова трактуется так: если процесс однородный и из каждого состояния возможен переход за конечное время в любое другое состояние и число состояний счетно или конечно, то предельные значения существуют и их значения не зависят от выбранного начального состояния.

Особенностью модели является наличие прямой и обратной связей с каждым соседним состоянием для всех средних состояний; первое и последнее (крайние) состояния связаны только с одним "соседом" (с последующим и предыдущим состояниями соответственно).

Название модели - "гибель и размножение" - связано с представлением, что стрелки вправо означают переход к состояниям, связанным с ростом номера состояния ("рождение"), а стрелки влево - с убыванием номера состояний ("гибель").

Очевидно, стационарное состояние в этом процессе существует. Составлять уравнения Колмогорова нет необходимости, так как структура регулярна, необходимые формулы приводятся в справочниках, а также в рекомендованной литературе.


Рис. 2.6.

Интенсивности потоков отказов;

Интенсивности потоков восстановлений.

Пусть среднее время безотказной работы каждого компьютера , а среднее время восстановления одного компьютера .

Тогда интенсивность отказов одного компьютера будет равна , а интенсивность восстановления одного компьютера - .

В состоянии работают оба компьютера, следовательно:

В состоянии работает один компьютер , значит:

В состоянии восстанавливается один компьютер , тогда:

В состоянии восстанавливаются оба компьютера:

Используем зависимости (2.2). Вероятность состояния, когда обе машины исправны:

Вероятность второго состояния (работает один компьютер ):

Аналогично вычисляется и . Хотя найти можно и так:

Пример 2.4 . В полосе объединения работают передатчики противника. Подразделение операторов-связистов армейской контрразведки ведет поиск передатчиков по их радиоизлучениям. Каждый оператор, обнаружив передатчик противника, следит за его частотой, при этом новым поиском не занимается. В процессе слежения частота может быть потеряна, после чего оператор снова осуществляет поиск .

Разработать математическую модель для определения эффективности службы подразделения операторов. Под эффективностью понимается среднее число обнаруженных передатчиков за установленный промежуток времени.

Решение

Будем считать, что наши операторы и радисты противника обладают высокой квалификацией, хорошо натренированы. Следовательно, можно принять, что интенсивности обнаружения частот передатчиков противника и потерь слежения - постоянны. Обнаружение частоты и ее потеря зависят только от того, сколько запеленговано передатчиков в настоящий момент и не зависят от того, когда произошло это пеленгование. Следовательно, процесс обнаружения и потерь слежения за частотами можно считать непрерывным однородным марковским процессом.

Исследуемое свойство этой системы пеленгации: загруженность операторов, что, очевидно, совпадает с числом обнаруженных частот.

Введем обозначения:

Количество операторов;

Количество передатчиков противника, полагаем ;

Среднее число операторов, ведущих слежение ;

Среднее число запеленгованных передатчиков;

Интенсивность пеленгации передатчика противника одним оператором;

Интенсивность потока потерь слежения оператором;

Текущая численность запеленгованных передатчиков .

В системе пеленгации возможны следующие состояния:

Запеленгованных передатчиков нет, поиск ведут операторов, вероятность состояния ;

В предыдущем параграфе мы убедились, что зная размеченный граф состояний системы, можно сразу написать алгебраические уравнения для предельных вероятностей состояний. Таким образом, если две непрерывные цепи Маркова имеют одинаковые графы состояний и различаются только значениями интенсивностей то нет надобности находить предельные вероятности состояний для каждого из графов в отдельности: достаточно составить и решить в буквенном виде уравнения для одного из них, а затем подставить вместо соответствующие значения.

Для многих часто встречающихся форм графов линейные уравнения легко решаются в буквенном виде.

В данном параграфе мы познакомимся с одной очень типичной схемой непрерывных марковских цепей - так называемой «схемой гибели и размножения».

Марковская непрерывная цепь называется «процессом гибели и размножения», если ее граф состояний имеет вид, представленный на рис. 4.38, т. е. все состояния можно вытянуть в одну цепочку, в которой каждое из средних состояний связано прямой и обратной связью с каждым из соседних состояний, а крайние состояния - только с одним соседним состоянием.

Пример 1. Техническое устройство состоит из трех одинаковых узлов; каждый из них может выходить из строя (отказывать); отказавший узел немедленно начинает восстанавливаться. Состояния системы нумеруем по числу неисправных узлов:

Все три узла исправны;

Один узел отказал (восстанавливается), два исправны;

Два узла восстанавливаются, один исправен;

Все узла восстанавливаются.

Граф состояний показан на рис. 4.39. Из графа видно, что процесс, протекающий в системе, представляет собой процесс «гибели и размножения».

Схема гибели и размножения очень часто встречается в самых разнообразных практических задачах; поэтому имеет смысл заранее рассмотреть эту схему в общем виде и решить соответствующую систему алгебраических уравнений с тем, чтобы в дальнейшем, встречаясь с конкретными процессами, протекающими по такой схеме, не решать задачу каждый раз заново, а пользоваться уже готовым решением.

Итак, рассмотрим случайный процесс гибели и размножения с графом состояний, представленным на рис. 4.40

Напишем алгебраические уравнения для вероятностей состояний. Для первого состояния имеем:

Для второго состояния суммы членов, соответствующих входящим и выходящим стрелкам, равны:

Но, в силу (8.1), можно сократить справа и слева равные друг другу члены получим:

Одним словом, для схемы гибели и размножения члены, соответствующие стоящим друг над другом стрелкам, равны между собой:

где k принимает все значения от 2 до .

Итак, предельные вероятности состояний в любой схеме гибели и размножения удовлетворяют уравнениям:

и нормировочному условию:

Будем решать эту систему следующим образом: из первого уравнения (7.3) выразим

из второго, с учетом (8.5), получим:

из третьего, с учетом (8.6):

Эта формула справедлива для любого k от 2 до .

Обратим внимание на ее структуру. В числителе стоит произведение всех плотностей вероятности перехода (интенсивностей) стоящих у стрелок, направленных слева направо, с начала и вплоть до той, которая идет в состояние в знаменателе - произведение всех интенсивностей стоящих у стрелок, идущих справа налево, опять-таки, с начала и вплоть до стрелки, исходящей из состояния При в числителе будет стоять произведение интенсивностей стоящих у всех стрелок, идущих слева направо, а в знаменателе - у всех стрелок, идущих справа налево.

Итак, все вероятности выражены через одну из них: Подставим эти выражения в нормировочное условие: Получим:

Остальные вероятности выражаются через

Таким образом, задача «гибели и размножения» решена в общем виде: найдены предельные вероятности состояний.

Пример 2. Найти предельные вероятности состояний для процесса гибели и размножения, граф которого показан на рис. 4.41.

Решение По формулам (8.8) и (8.9) имеем:

Пример 3. Прибор состоит из трех узлов; поток отказов - простейший, среднее время безотказной работы каждого узла равно Отказавший узел сразу же начинает ремонтироваться; среднее время ремонта (восстановления) узла равно р; закон распределения этого времени показательный (поток восстановлений - простейший). Найти среднюю производительность прибора, если при трех работающих узлах она равна 100%, при двух - 50%, а при одном и менее - прибор вообще не работает.

Решение. Перечень состояний системы и граф состояний уже приводились в примере 1 данного параграфа. Разметим этот граф, т. е. проставим у каждой стрелки соответствующую интенсивность (см. рис. 4.42).

Мы знаем, что имея в распоряжении размеченный граф состояний, можно легко написать уравнения Колмогорова для вероятностей состояний, а также написать и решить алгебраические уравнения для финальных вероятностей. Для некоторых случаев удается последние уравнения решить заранее, в буквенном виде.

В частности, это удается сделать, если граф состояний системы представляет собой так называемую «схему гибели и размножения».

Граф состояний для схемы гибели и размножения имеет вид, показанный на рис. 19.1. Особенность этого графа в том, что все состояния системы можно вытянуть в одну цепочку, в которой каждое из средних состояний связано прямой и обратной стрелкой с каждым из соседних состояний - правым и левым, а крайние состояния - только с одним соседним состоянием. Термин «схема гибели и размножения» ведет начало от биологических задач, где подобной схемой описывается изменение численности популяции.

Схема гибели и размножения очень часто встречается в разных задачах практики, в частности - в теории массового обслуживания, поэтому полезно, один раз и навсегда, найти для нее финальные вероятности состояний.

Предположим, что все потоки событий, переводящие систему по стрелкам графа, - простейшие (для краткости будем называть и систему S и протекающий в ней процесс - простейшими).

Пользуясь графом рис. 19.1, составим и решим алгебраические уравнения для финальных вероятностей состояний (их существование вытекает из того, что из каждого состояния можно перейти в каждое другое, и число состояний конечно).

Для первого состояния имеем:

Для второго состояния

В силу (19.1) последнее равенство приводится к виду

где к принимает все значения от 0 до п. Итак, финальные вероятности удовлетворяют уравнениям

кроме того, надо учесть нормировочное условие

Решим эту систему уравнений. Из первого уравнения (19.2) выразим через :

Из второго, с учетом (19.4), получим;

из третьего, с учетом (19.5),

и вообще, для любого к (от 1 до ):

Обратим внимание на формулу (19.7). В числителе стоит произведение всех интенсивностей, стоящих у стрелок, ведущих слева направо (с начала и до данного состояния ), а в знаменателе - произведение всех интенсивностей, стоящих у стрелок, ведущих справа налево (с начала и до ).

Таким образом, все вероятности состояний выражены через одну из них Подставим эти выражения в нормировочное условие (19.3). Получим, вынося за скобку

отсюда получим выражение для :

(скобку мы возвели в степень -1, чтобы не писать двухэтажных дробей). Все остальные вероятности выражены через (см. формулы (19.4)-(19.7)). Заметим, что коэффициенты при в каждой из них представляют собой не что иное, как последовательные члены ряда, стоящего после единицы в формуле (19.8). Значит, вычисляя мы уже нашли все эти коэффициенты.

Полученные формулы очень полезны при решении простейших задач теории массового обслуживания.

2. Формула Литтла. Теперь мы выведем одну важную формулу, связывающую (для предельного, стационарного режима) среднее число заявок находящихся в системе массового обслуживания (т. е. обслуживаемых или стоящих в очереди), и среднее время пребывания заявки в системе .

Рассмотрим любую СМО (одноканальную, многоканальную, марковскую, немарковскую, с неограниченной или с ограниченной очередью) и связанные с нею два потока событий: поток заявок, прибывающих в СМО, и поток заявок, покидающих СМО.

Если в системе установился предельный, стационарный режим, то среднее число заявок, прибывающих в СМО за единицу времени, равно среднему числу заявок, покидающих ее: оба потока имеют одну и ту же интенсивность .

Обозначим: - число заявок, прибывших в СМО до момента число заявок, покинувших СМО до момента

И та, и другая функции являются случайными и меняются скачком (увеличиваются на единицу) в моменты приходов заявок и уходов заявок Вид функций показан на рис. 19.2; обе линии - ступенчатые, верхняя - нижняя Очевидно, что для любого момента разность есть не что иное, как число заявок, находящихся в СМО. Когда линии сливаются, в системе нет заявок.

Рассмотрим очень большой промежуток времени Т (мысленно продолжив график далеко за пределы чертежа) и вычислим для него среднее число заявок, находящихся в СМО. Оно будет равно интегралу от функции на этом промежутке, деленному на длину интервала Т:

Но этот интеграл представляет собой не что иное, как площадь фигуры, заштрихованной на рис. 19.2. Разглядим хорошенько этот рисунок. Фигура состоит из прямоугольников, каждый из которых имеет высоту, равную единице, и основание, равное времени пребывания в системе соответствующей заявки (первой, второй и т. д.). Обозначим эти времена h,

Если да, под конец промежутка Т некоторые прямоугольники войдут в заштрихованную фигуру не полностью, а частично, но при достаточно большом Т эти мелочи не будут играть роли. Таким образом, можно считать, что

(19.10)