Биогафии

Найти длину дуги одной арки циклоиды. Замечательные кривые и их свойства. по математическому анализу на тему

Федеральное агентство по образованию

ГОУ ВПО «Красноярский государственный педагогический университет им. В.П. Астафьева

Факультет математики и информатики

Кафедра математического анализа и методики его преподавания

Курсовая работа

по математическому анализу на тему

«Циклоида»

Выполнила студентка 43 группы

Ковальчук М.В.

Научный руководитель

доцент кафедры мат. анализа и мп

Шатохина М.П

Красноярск 2010


1. Введение

2. Исторические сведения

3. Основные свойства циклоиды

4. Построение циклоиды

5. Геометрическое определение циклоиды

6. Параметрическое уравнение циклоиды и уравнение в декартовых координата

7. Задачи на нахождение частей циклоиды и фигур, образованных циклоидой

8. Заключение

Кривая циклоида очень интересна для изучения, однако не так просто найти литературу ей посвященную. В большинстве таких источников циклоида упоминается только вскользь или рассматривается не достаточно полно. Однако она используется при решении различных задач. В виду того, что в школах вводится углубленное изучение математических дисциплин, в скором времени может понадобиться подробная информация о различных кривых, в том числе и о циклоиде. Так же задачи связанные с циклоидой встречаются и в физике и в высшей математике. Поэтому я посчитала данную тему актуальной и интересной для изучения.

Цель работы: описать основные свойства циклоиды, привести решение геометрических задач, связанных с циклоидой.

1. Исторические сведения

Первым кто стал изучать циклоиду, был Галилео Галилей (1564-1642)_ знаменитый итальянский, астроном, физик и просветитель. Он же и придумал название «циклоида» , что значит: «напоминающая о круге». Сам Галилей о циклоиде ничего не писал, но о его работах в этом направлении упоминают ученики и последователи Галилея: Вивиани, Торичелли и другие.

Великий античный философ - «отец логики» - Аристотель из Стагиры (384-322 годы до н. э.), занимаясь логическим обоснованием понятия движения, рассматривал, между прочим, следующий парадокс.

рис. 1

Пусть кружок, изображенный на рис. 1 жирной линией, катится по прямой АВ. Когда кружок этот сделает полный оборот, точка М вернется на прямую АВ и займет положение М х. При этом, как мы знаем, отрезок ММ Х будет равен длине «жирной» окружности. Рассмотрим начерченный кружок с центром О, изображенный тонкой линией. Когда точка М придет в положение М 1 этот маленький кружок тоже сделает полный оборот и его точка К придет в положение К 1 . При этом в каждый момент времени какая-то одна единственная точка маленькой окружности совмещается с единственной же точкой отрезка КК 1 . Каждой точке окружности соответствует единственная точка отрезка и каждой точке отрезка - единственная точка окружности. Поэтому напрашивается вывод: длина маленькой «тонкой» окружности равна длине отрезка КК 1 - ММ 1 т. е. равна длине большой («жирной») окружности. Итак, круги различных радиусов имеют окружности одинаковой длины! В этом и состоит парадокс Аристотеля.

Ошибка здесь в следующем. Из того, что каждой точке окружности радиуса ОК соответствует единственная точка отрезка КК 1 вовсе не следует, что длина этой окружности равна КК 1 . Так, например, на рис. 2 точки отрезка АВ приведены при помощи лучей, проходящих через точку D, во «взаимно однозначное» соответствие с точками вдвое большего отрезка СЕ, но никому в голову не придет утверждать, что отрезки АВ и СЕ имеют одинаковую длину! Это же относится не только к отрезкам прямых, но и кривых линий. Парадоксу Аристотеля можно придать следующую, более грубую, а потому и более ясную форму: рассмотрим две концентрические окружности (рис. 3). На них «поровну» точек: соответствующие точки соединены на рис. 3 прямыми линиями (радиусами). И все же никто не станет утверждать, что длины этих окружностей одинаковы.

рис 2 рис. 3

Аристотель рассматривал именно то движение, которое через 1900 лет привело Галилея к открытию циклоиды; но он не заинтересовался кривыми, которые вычерчиваются точками окружности катящегося круга.

В самом начале XVII века юный Галилей пытался экспериментально проверить свою догадку о том, что свободное падение - равноускоренное движение. Когда он перенес наблюдения с Пизанской башни в лаборатории, ему стало очень мешать то, что тела падают «слишком быстро». Чтобы замедлить это движение, Галилей решил заменить свободное падение тел их движением по наклонной плоскости, предположив, что и оно будет равноускоренным. Проводя эти опыты, Галилей обратил внимание на то, что в конечной точке величина скорости тела, скатившегося по наклонной плоскости, не зависит от угла наклона плоскости, а определяется только высотойH и совпадает с конечной скоростью тела, свободно упавшего с той же высоты (как вы хорошо знаете, в обоих случаях |v ̄|=

Изучив движения по наклонным плоскостям, Галилей перешел к рассмотрению движения материальной точки под действием силы тяжести по ломаным линиям. Сравнивая времена движения по различным ломаным, соединяющим фиксированную пару точек А и В , Галилей заметил, что если через эти две точки А, В провести четверть окружности и вписать в нее две ломаные М иL , такие, что ломанаяL «вписана» в ломаную М, то материальная точка из А в В быстрее попадает по ломаной М, чем по ломаной L. Увеличивая у ломаной число звеньев и переходя к пределу, Галилей получил, что по четверти окружности, соединяющей две заданные точки, материальная точка спустится быстрее, чем по любой вписанной в эту четверть окружности ломаной. Из этого Галилей сделал ничем не аргументированный вывод, что четверть окружности, соединяющая пару заданных точек А, В (не лежащих на одной вертикали), и будет для материальной точки, движущейся под действием силы тяжести, линией наискорейшего спуска (позже линию наискорейшего спуска стали называть брахистохроной). Впоследствии выяснилось, что это утверждение Галилея было не только необоснованным, но и ошибочным.

Свойства касательной и нормали к циклоиде были впервые изложены Торичелли (1608-1647) в его книге «Геометрические работы» (1644 год). Торичелли использовал при этом сложение движений. Несколько позже, но полнее, разобрал эти вопросы Роберваль (псевдоним французского математика Жилля Персонна, 1602-1672). В 1634 году Роберваль –вычислил площадь, ограниченную аркой циклоиды и ее основанием. Свойства касательной к циклоиде изучал также Декарт; он изложил свои результаты, не прибегая к помощи механики.

2. Основные свойства циклоиды

Определение циклоиды, введенное ранее, никогда не удовлетворяло ученых: ведь оно опирается на механические понятия - скорости, сложения движений и т. д. Поэтому геометры всегда стремились дать циклоиде чисто геометрическое определение» Но для того, чтобы дать такое определение, нужно прежде всего изучить основные свойства циклоиды, пользуясь ее механическим определением. Выбрав наиболее простое и характерное из этих свойств, можно положить его в основу геометрического определения.

Начнем с изучения касательной и нормали к циклоиде. Что такое касательная к кривой линии, каждый представляет себе достаточно ясно; точно определение касательной дается в курсах высшей математики, и мы его приводить здесь не будем. Нормалью называется перпендикуляр к касательной, восставленный в точке касания. На рис. 16 изображена касательная и нормаль к кривой АВ в ее точке М

Рассмотрим циклоиду (рис. 17),круг катящийся по прямой АВ. Допустим, что вертикальный радиус круга, проходивший в начальный момент через нижнюю точку циклоиды, успел повернуться на угол φ и занял положение ОМ. Иными словами, мы считаем, что отрезок М о Т составляет такую долю отрезка М о М 1 , какую угол φ составляет от 360° (от полного оборота).

Касательная к циклоиде

При этом точка М 0 пришла в точку М. Точка М и есть интересующая нас точка циклоиды.

СтрелочкаOH изображает скорость движения центра катящегося круга. Такой же горизонтальной скоростью обладают все точки круга, в том числе и точка М. Но, кроме того, точка М принимает участие во вращении круга. Скорость МС, которую точка М на окружности получает при этом вращении, направлена по касательной МС 1 к окружности, т. е. перпендикулярно к радиусу ОМ. А т.к. в этом случае скорость МС по величине равна скорости MP (т. е. скорости ОН). Поэтому параллелограмм скоростей в случае нашего движения будет ромбом (ромб МСКР на рис. 17). Диагональ МК этого ромба как раз и даст нам касательную к циклоиде.

Все сказанное дает возможность решить следующую «задачу на построение»: дана направляющая прямая АВ циклоиды, радиус г производящего круга и точка М, принадлежащая циклоиде (рис. 17). Требуется построить касательную МК к циклоиде.

Имея точку М, мы без труда строим производящий круг, в том его положении, когда точка на окружности попадает в М. Для этого предварительно найдем центр О при помощи радиуса МО =r (точка О должка лежать на прямой, параллельной АВ на расстоянии г от нее). Затем строим отрезок MP произвольной длины, параллельный направляющей прямой. Далее строим прямую МС 1 , перпендикулярную к ОМ На этой прямой откладываем от точки М отрезок МС, равный MP. На МС и MP, как на сторонах, строим ромб. Диагональ этого ромба и будет касательной к циклоиде в точке М.

Помни-те оран-же-вые пласт-мас-со-вые ка-та-фо-ты - све-то-от-ра-жа-те-ли, при-креп-ля-ю-щи-е-ся к спи-цам ве-ло-си-пед-но-го ко-ле-са? При-кре-пим ка-та-фот к са-мо-му обо-ду ко-ле-са и про-сле-дим за его тра-ек-то-ри-ей . По-лу-чен-ные кри-вые при-над-ле-жат се-мей-ству цик-ло-ид.

Ко-ле-со при этом на-зы-ва-ет-ся про-из-во-дя-щим кру-гом (или окруж-но-стью) цик-ло-и-ды.

Но да-вай-те вер-нём-ся в наш век и пе-ре-ся-дем на бо-лее совре-мен-ную тех-ни-ку. На пу-ти бай-ка по-пал-ся ка-му-шек, ко-то-рый за-стрял в про-тек-то-ре ко-ле-са. Про-вер-нув-шись несколь-ко кру-гов с ко-ле-сом, ку-да по-ле-тит ка-мень, ко-гда вы-ско-чит из про-тек-то-ра? Про-тив на-прав-ле-ния дви-же-ния мо-то-цик-ла или по на-прав-ле-нию?

Как из-вест-но, сво-бод-ное дви-же-ние те-ла на-чи-на-ет-ся по ка-са-тель-ной к той тра-ек-то-рии, по ко-то-рой оно дви-га-лось. Ка-са-тель-ная к цик-ло-и-де все-гда на-прав-ле-на по на-прав-ле-нию дви-же-ния и про-хо-дит через верх-нюю точ-ку про-из-во-дя-щей окруж-но-сти. По на-прав-ле-нию дви-же-ния по-ле-тит и наш ка-му-шек.

Помни-те, как Вы ка-та-лись в дет-стве по лу-жам на ве-ло-си-пе-де без зад-не-го кры-ла? Мок-рая по-лос-ка на ва-шей спине яв-ля-ет-ся жи-тей-ским под-твер-жде-ни-ем толь-ко что по-лу-чен-но-го ре-зуль-та-та.

Век XVII - это век цик-ло-и-ды. Луч-шие учё-ные изу-ча-ли её уди-ви-тель-ные свой-ства.

Ка-кая тра-ек-то-рия при-ве-дёт те-ло, дви-жу-ще-е-ся под дей-стви-ем си-лы тя-же-сти, из од-ной точ-ки в дру-гую за крат-чай-шее вре-мя ? Это бы-ла од-на из пер-вых за-дач той на-у-ки, ко-то-рая сей-час но-сит на-зва-ние ва-ри-а-ци-он-ное ис-чис-ле-ние.

Ми-ни-ми-зи-ро-вать (или мак-си-ми-зи-ро-вать) мож-но раз-ные ве-щи - дли-ну пу-ти, ско-рость, вре-мя. В за-да-че о бра-хи-сто-хроне ми-ни-ми-зи-ру-ет-ся имен-но вре-мя (что под-чёр-ки-ва-ет-ся са-мим на-зва-ни-ем: греч. βράχιστος - наи-мень-ший, χρόνος - вре-мя).

Пер-вое, что при-хо-дит на ум, - это пря-мо-ли-ней-ная тра-ек-то-рия. Да-вай-те так-же рас-смот-рим пе-ре-вёр-ну-тую цик-ло-и-ду с точ-кой воз-вра-та в верх-ней из за-дан-ных то-чек. И, сле-дуя за Га-ли-лео Га-ли-ле-ем, - чет-вер-тин-ку окруж-но-сти , со-еди-ня-ю-щую на-ши точ-ки.

По-че-му же Га-ли-лео Га-ли-лей рас-смат-ри-вал чет-вер-тин-ку окруж-но-сти и счи-тал, что это наи-луч-шая в смыс-ле вре-ме-ни тра-ек-то-рия спус-ка? Он впи-сы-вал в неё ло-ма-ные и за-ме-тил, что при уве-ли-че-нии чис-ла зве-ньев вре-мя спус-ка умень-ша-ет-ся. От-сю-да Га-ли-лей есте-ствен-ным об-ра-зом пе-ре-шёл к окруж-но-сти, но сде-лал невер-ный вы-вод, что эта тра-ек-то-рия наи-луч-шая сре-ди всех воз-мож-ных. Как мы ви-де-ли, наи-луч-шей тра-ек-то-ри-ей яв-ля-ет-ся цик-ло-и-да.

Через две дан-ные точ-ки мож-но про-ве-сти един-ствен-ную цик-ло-и-ду с усло-ви-ем, что в верх-ней точ-ке на-хо-дит-ся точ-ка воз-вра-та цик-ло-и-ды. И да-же ко-гда цик-ло-и-де при-хо-дит-ся под-ни-мать-ся, чтобы прой-ти через вто-рую точ-ку, она всё рав-но бу-дет кри-вой наи-ско-рей-ше-го спус-ка !

Ещё од-на кра-си-вая за-да-ча, свя-зан-ная с цик-ло-и-дой, - за-да-ча о та-у-то-хроне. В пе-ре-во-де с гре-че-ско-го ταύτίς озна-ча-ет «тот же са-мый», χρόνος, как мы уже зна-ем - «вре-мя».

Сде-ла-ем три оди-на-ко-вые гор-ки с про-фи-лем в ви-де цик-ло-и-ды, так, чтобы кон-цы го-рок сов-па-да-ли и рас-по-ла-га-лись в вер-шине цик-ло-и-ды . По-ста-вим три бо-ба на раз-ные вы-со-ты и да-дим от-маш-ку. Уди-ви-тель-ней-ший факт - все бо-бы при-едут вниз од-новре-мен-но !

Зи-мой Вы мо-же-те по-стро-ить во дво-ре гор-ку изо льда и про-ве-рить это свой-ство вжи-вую.

За-да-ча о та-у-то-хроне со-сто-ит в на-хож-де-нии та-кой кри-вой, что, на-чи-ная с лю-бо-го на-чаль-но-го по-ло-же-ния, вре-мя спус-ка в за-дан-ную точ-ку бу-дет оди-на-ко-вым.

Хри-сти-ан Гюй-генс до-ка-зал, что един-ствен-ной та-у-то-хро-ной яв-ля-ет-ся цик-ло-и-да.

Ко-неч-но же, Гюй-ген-са не ин-те-ре-со-вал спуск по ле-дя-ным гор-кам. В то вре-мя учё-ные не име-ли та-кой рос-ко-ши за-ни-мать-ся на-у-ка-ми из люб-ви к ис-кус-ству. За-да-чи, ко-то-рые изу-ча-лись, ис-хо-ди-ли из жиз-ни и за-про-сов тех-ни-ки то-го вре-ме-ни. В XVII ве-ке со-вер-ша-ют-ся уже даль-ние мор-ские пла-ва-ния. Ши-ро-ту мо-ря-ки уме-ли опре-де-лять уже до-ста-точ-но точ-но, но уди-ви-тель-но, что дол-го-ту не уме-ли опре-де-лять со-всем. И один из пред-ла-гав-ших-ся спо-со-бов из-ме-ре-ния ши-ро-ты был ос-но-ван на на-ли-чии точ-ных хро-но-мет-ров.

Пер-вым, кто за-ду-мал де-лать ма-ят-ни-ко-вые ча-сы, ко-то-рые бы-ли бы точ-ны, был Га-ли-лео Га-ли-лей. Од-на-ко в тот мо-мент, ко-гда он на-чи-на-ет их ре-а-ли-зо-вы-вать, он уже стар, он слеп, и за остав-ший-ся год сво-ей жиз-ни учё-ный не успе-ва-ет сде-лать ча-сы. Он за-ве-ща-ет это сы-ну, од-на-ко тот мед-лит и на-чи-на-ет за-ни-мать-ся ма-ят-ни-ком то-же лишь пе-ред смер-тью и не успе-ва-ет ре-а-ли-зо-вать за-мы-сел. Сле-ду-ю-щей зна-ко-вой фигу-рой был Хри-сти-ан Гюй-генс.

Он за-ме-тил, что пе-ри-од ко-ле-ба-ния обыч-но-го ма-ят-ни-ка, рас-смат-ри-вав-ше-го-ся Га-ли-ле-ем, за-ви-сит от из-на-чаль-но-го по-ло-же-ния, т.е. от ам-пли-ту-ды. За-ду-мав-шись о том, ка-ко-ва долж-на быть тра-ек-то-рия дви-же-ния гру-за, чтобы вре-мя ка-че-ния по ней не за-ви-се-ло от ам-пли-ту-ды, он ре-ша-ет за-да-чу о та-у-то-хроне. Но как за-ста-вить груз дви-гать-ся по цик-ло-и-де ? Пе-ре-во-дя тео-ре-ти-че-ские ис-сле-до-ва-ния в прак-ти-че-скую плос-кость, Гюй-генс де-ла-ет «щёч-ки», на ко-то-рые на-ма-ты-ва-ет-ся ве-рев-ка ма-ят-ни-ка, и ре-ша-ет ещё несколь-ко ма-те-ма-ти-че-ских за-дач. Он до-ка-зы-ва-ет, что «щёч-ки» долж-ны иметь про-филь той же са-мой цик-ло-и-ды, тем са-мым по-ка-зы-вая, что эво-лю-той цик-ло-и-ды яв-ля-ет-ся цик-ло-и-да с те-ми же па-ра-мет-ра-ми.

Кро-ме то-го, пред-ло-жен-ная Гюй-ген-сом кон-струк-ция цик-ло-и-даль-но-го ма-ят-ни-ка поз-во-ля-ет по-счи-тать дли-ну цик-ло-и-ды. Ес-ли си-нюю ни-точ-ку, дли-на ко-то-рой рав-на че-ты-рём ра-ди-у-сам про-из-во-дя-ще-го кру-га, мак-си-маль-но от-кло-нить, то её ко-нец бу-дет в точ-ке пе-ре-се-че-ния «щёч-ки» и цик-ло-и-ды-тра-ек-то-рии, т.е. в вер-шине цик-ло-и-ды-«щёч-ки». Так как это по-ло-ви-на дли-ны ар-ки цик-ло-и-ды, то пол-ная дли-на рав-на вось-ми ра-ди-у-сам про-из-во-дя-ще-го кру-га.

Хри-сти-ан Гюй-генс сде-лал цик-ло-и-даль-ный ма-ят-ник, и ча-сы с ним про-хо-ди-ли ис-пы-та-ния в мор-ских пу-те-ше-стви-ях, но не при-жи-лись. Впро-чем, так же, как и ча-сы с обыч-ным ма-ят-ни-ком для этих це-лей.

От-че-го же, од-на-ко, до сих пор су-ще-ству-ют ча-со-вые ме-ха-низ-мы с обык-но-вен-ным ма-ят-ни-ком? Ес-ли при-гля-деть-ся, то при ма-лых от-кло-не-ни-ях, как у крас-но-го ма-ят-ни-ка, «щёч-ки» цик-ло-и-даль-но-го ма-ят-ни-ка по-чти не ока-зы-ва-ют вли-я-ния. Со-от-вет-ствен-но, дви-же-ние по цик-ло-и-де и по окруж-но-сти при ма-лых от-кло-не-ни-ях по-чти сов-па-да-ют.

Разобранные примеры помогли нам привыкнуть к новым понятиям эволюты и эвольвенты. Теперь мы достаточно подготовлены, чтобы заняться исследованием разверток циклоидальных кривых.

Изучая ту или иную кривую, мы нередко строили вспомогательную кривую - «спутницу» данной кривой.

Рис. 89. Циклоида и ее сопровождающая.

Так, мы строили конхоиды прямой и окружности, развертку окружности, синусоиду - спутницу циклоиды. Теперь, исходя из данной циклоиды, мы построим неразрывно связанную с ней вспомогательную циклоиду же. Оказывается, совместное изучение такой пары циклоид в некоторых отношениях проще, чем изучение одной отдельно взятой циклоиды. Такую вспомогательную циклоиду мы будем называть сопровождающей циклоидой.

Рассмотрим половину арки циклоиды АМВ (рис. 89). Нас не должно смущать, что циклоида эта расположена непривычным образом («вверх ногами»).

Проведем 4 прямые, параллельные направляющей прямой АК на расстояниях а, 2а, 3а и 4а. Построим производящий крут в положении, соответствующем точке М (на рис. 89 центр этого круга обозначен буквою О). Угол поворота МОН обозначим через . Тогда отрезок АН будет равен (угол выражен в радианах).

Диаметр НТ производящего круга продолжим за точку Т до пересечения (в точке Е) с прямой РР. На ТЕ как на диаметре построим окружность (с центром ). Построим касательную в точке М к циклоиде АМВ. Для этого точку М нужно, как мы знаем, соединить с точкой Т (стр. 23). Продолжим касательную МТ за точку Т до пересечения со вспомогательной окружностью, и точку пересечения назовем . Вот этой-то точкою мы и хотим теперь заняться.

Угол МОН мы обозначили через Поэтому угол МТН будет равняться (вписанный угол, опирающийся на ту же дугу). Треугольник очевидно, равнобедренный. Поэтому не только угол но и угол будут каждый равняться Таким образом, на долю угла в треугольнике остается ровно радианов (вспомним, что угол 180° равен радианов). Заметим еще, что отрезок НК равен, очевидно, а ().

Рассмотрим теперь окружность с центром , изображенную на рис. 89 штриховой линией. Из чертежа ясно, что это за окружность. Если катить ее без сколь-" жения по прямой СВ, то её точка В опишет циклоиду ВВ. Когда штриховой круг повернется на угол , центр придет в точку , а радиус займет положение Таким образом, построенная нами точка оказывается точкою циклоиды ВВ,

Описанное построение ставит в соответствие каждой точке М циклоиды АМВ точку циклоиды На рис. 90 это соответствие показано более наглядно. Полученная таким путем циклоида и называется сопровождающей. На рис. 89 и 90 циклоиды, изображенные жирными штриховыми линиями, являются сопровождающими по отношению к циклоидам, изображенным жирными сплошными линиями.

Из рис. 89 видно, что прямая является нормалью в точке к сопровождающей циклоиде. Действительно, эта прямая проходит через точку циклоиды и через точку Т касания производящего круга и направляющей прямой («наинизшую» точку производящего круга, как мы говорили когда-то; теперь она оказалась «наивысшей», потому что чертеж повернут).

Но эта же прямая, по построению, является касательной к «основной» циклоиде АМВ. Таким образом, исходная циклоида касается каждой нормали сопровождающей циклоиды. Она является огибающей для нормалей сопровождающей циклоиды, т. е. ее эволютой. А «сопровождающая» циклоида оказывается просто напросто эвольвентой (разверткой) исходной циклоиды!

Рис. 91 Соответствие между точками циклоиды и ее сопровождающей.

Занимаясь этим громоздким, но в сущности простым построением, мы доказали замечательную теорему, открытую голландским ученым Гюйгенсом. Вот эта теорема: эволютой циклоиды служит точно такая же циклоида, только сдвинутая.

Построив эволюту не к одной арке, а ко всей циклоиде (что можно, разумеется, сделать только мысленно), зятем эволюту к этой эволюте и т. д., получим рис. 91, напоминающий черепицу.

Обратим внимание на то, что при доказательстве теоремы Гюйгенса мы не пользовались ни бесконечно малыми, ни неделимыми, ни приблизительными оценками. Даже механикой мы не пользовались, хогя употребляли иногда заимствованные из механики выражения. Доказательство это совершенно в духе тех рассуждений, которыми пользовались ученые XVII века, когда хотели строго обосновать результаты, полученные с помощью различных наводящих соображений.

Из теоремы Гюйгенса получается сразу важное следствие. Рассмотрим отрезок АВ на рис. 89. Длина этого отрезка равна, очевидно, 4а. Представим себе теперь, что на дугу АМВ циклоиды намотана нить, закрепленная в точке А и снабженная карандашом в точке В. Если мы будем «сматывать» нить, то карандаш будет двигаться по развертке циклоиды АМВ, т. е. по циклоиде ВМВ.

Рис. 91 Последовательные эволюты циклоиды.

Длина нити, равная длине полуарки циклоиды, будет, очевидно, равна отрезку АВ, т. е., как мы видели, 4а. Следовательно, длина всей арки циклоиды будет равна 8а, и формулу можно считать теперь достаточно строго доказанной.

Из рис. 89 можно увидеть больше: формулу не только для длины всей арки циклоиды, но и для длины любой ее дуги. Действительно, очевидно, что длина дуги MB равна длине отрезка , т. е. удвоенному отрезку касательной в соответствующей точке циклоиды, заключенному внутри производящего крута.

5. Параметрическое уравнение циклоиды и уравнение в декартовых координатах

Допустим, что у нас дана циклоида, образованная окружностью радиуса а с центром в точке А.

Если выбрать в качестве параметра, определяющего положение точки, угол t=∟NDM на который успел повернуться радиус, имевший в начале качения вертикально е положение АО, то координаты х и у точки М выразятся следующим образом:

х= OF = ON - NF = NM - MG = at-a sin t,

y= FM = NG = ND – GD = a – a cos t

Итак параметрические уравнения циклоиды имеют вид:


При изменении t от -∞ до +∞ получится кривая, состоящая из бесчисленного множества таких ветвей, какая изображена на данном рисунке.

Так же, помимо параметрического уравнения циклоиды, существует и ее уравнение в декартовых координатах:

Где r – радиус окружности, образующей циклоиду.


6. Задачи на нахождение частей циклоиды и фигур, образованных циклоидой

Задача №1. Найти площадь фигуры, ограниченной одной аркой циклоиды, уравнение которой задано параметрически

и осью Ох.

Решение. Для решения данной задачи, воспользуемся известными нам фактами из теории интегралов, а именно:

Площадь криволинейного сектора.

Рассмотрим некоторую функцию r = r(ϕ), определенную на [α, β].

ϕ 0 ∈ [α, β] соответствует r 0 = r(ϕ 0) и, значит, точка M 0 (ϕ 0 , r 0), где ϕ 0 ,

r 0 - полярные координаты точки. Если ϕ будет меняться, «пробегая» весь[α, β], то переменная точка M опишет некоторую кривую AB, заданную

уравнением r = r(ϕ).

Определение 7.4. Криволинейным сектором называется фигура, ограниченная двумя лучами ϕ = α, ϕ = β и кривой AB, заданной в полярных

координатах уравнением r = r(ϕ), α ≤ ϕ ≤ β.

Справедлива следующая

Теорема. Если функция r(ϕ) > 0 и непрерывна на [α, β], то площадь

криволинейного сектора вычисляется по формуле:

Эта теорема была доказана ранее в теме определенного интеграла.

Исходя из приведенной выше теоремы, наша задача о нахождении площади фигуры, ограниченной одной аркой циклоиды, уравнение которой задано параметрические x= a (t – sin t) , y= a (1 – cos t) , и осью Ох, сводится к следующему решению.

Решение. Из уравнения кривой dx = a(1−cos t) dt. Первая арка циклоиды соответствует изменению параметра t от 0 до 2π. Следовательно,

Задача №2. Найти длину одной арки циклоиды

Так же в интегральном исчислении изучалась следующая теорема и следствие из нее.

Теорема. Если кривая AB задана уравнением y = f(x), где f(x) и f ’ (x) непрерывны на , то AB является спрямляемой и

Следствие. Пусть AB задана параметрически

L AB = (1)

Пусть функции x(t), y(t) непрерывно-дифференцируемые на [α, β]. Тогда

формулу (1) можно записать так

Сделаем замену переменных в этом интеграле x = x(t), тогда y’(x)= ;

dx= x’(t)dt и, следовательно:

А теперь вернемся к решении нашей задачи.

Решение. Имеем , а поэтому

Задача №3. Надо найти площадь поверхности S, образованной от вращения одной арки циклоиды

L={(x,y): x=a(t – sin t), y=a(1 – cost), 0≤ t ≤ 2π}

В интегральном исчислении существует следующая формула для нахождения площади поверхности тела вращения вокруг оси х кривой, заданной на отрезке параметрически: x=φ(t), y=ψ(t) (t 0 ≤t ≤t 1)

Применяя эту формулу для нашего уравнения циклоиды получаем:

Задача №4. Найти объем тела, полученного при вращении арки циклоиды


Вдоль оси Ох.

В интегральном исчислении при изучении объемов есть следующее замечание:

Если кривая, ограничивающая криволинейную трапецию задана параметрическими уравнениями и функции в этих уравнениях удовлетворяют условиям теоремы о замене переменной в определенном интеграле, то объем тела вращения трапеции вокруг оси Ох, будет вычисляться по формуле

Воспользуемся этой формулой для нахождения нужного нам объема.

Задача решена.


Заключение

Итак, в ходе выполнения данной работы были выяснены основные свойства циклоиды. Так же научились строить циклоиду, выяснила геометрический смысл циклоиды. Как оказалось циклоида имеет огромное практическое применение не только в математике, но и в технологических расчетах, в физике. Но у циклоиды есть и другие заслуги. Ею пользовались ученые XVII века при разработке приемов исследования кривых линий, - тех приемов, которые привели в конце концов к изобретению дифференциального и интегрального исчислений. Она же была одним из «пробных камней», на которых Ньютон, Лейбниц и их первые исследователи испытывали силу новых мощных математических методов. Наконец, задача о брахистохроне привела к изобретению вариационного исчисления, столь нужного физикам сегодняшнего дня. Таким образом, циклоида оказалась неразрывно связанной с одним из самых интересных периодов в истории математики.


Литература

1. Берман Г.Н. Циклоида. – М., 1980

2. Веров С.Г. Брахистохрона, или еще одна тайна циклоиды // Квант. – 1975. - №5

3. Веров С.Г. Тайны циклоиды// Квант. – 1975. - №8.

4. Гаврилова Р.М., Говорухина А.А., Карташева Л.В., Костецкая Г.С.,Радченко Т.Н. Приложения определенного интеграла. Методические указания и индивидуальные задания для студентов 1 курса физического факультета. - Ростов н/Д: УПЛ РГУ, 1994.

5. Гиндикин С.Г. Звездный век циклоиды // Квант. – 1985. - №6.

6. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Т.1. – М.,1969


Такая линия и называется «огибающей». Всякая кривая линия есть огибающая своих касательных.


Материя и движение, и тот метод, который они составляют, дают возможность каждому реализовать свои потенциальные возможности в познании истины. Разработка методики развития диалектико-материалистической формы мышления и овладение аналогичным ему методом познания является вторым шагом на пути решения проблемы развития и реализации возможностей Человека. Фрагмент XX Возможности...

Обстановке могут заболеть неврастенией – неврозом, основу клинической картины которого составляет астеническое состояние. И в случае неврастении, и в случае декомпенсации неврастенической психопатии существо душевной (психологической) защиты сказывается уходом от трудностей в раздражительную слабость с вегетативными дисфункциями: либо от нападения человек бессознательно «отбивается»больше...

Различных видах деятельности; развитии пространственного воображения и пространственных представлений, образного, пространственного, логического, абстрактного мышления школьников; формировании умений применять геометро-графические знания и умения для решения различных прикладных задач; ознакомлении с содержанием и последовательностью этапов проектной деятельности в области технического и...

Дуги. Спиралями являются также эвольвенты замкнутых кривых, например эвольвента окружности. Названия некоторым спиралям даны по сходству их полярных уравнений с уравнениями кривых в декартовых координатах, например: · параболическая спираль (а - r)2 = bj, · гиперболическая спираль: r = а/j. · Жезл: r2 = a/j · si-ci-cпираль, параметрические уравнения которой имеют вид: , }